【答案】
分析:(1)在(-1,-2)處取點(diǎn)D,可知A,B,D三點(diǎn)位于同一直線上,且△ACD為直角三角形,即∠ADC=90°.我們讓△ACD繞C點(diǎn)旋轉(zhuǎn),易知CD與x軸重合,A
1D∥y軸,即A′橫坐標(biāo)的數(shù)值等于CD的長(zhǎng)度加上OC的長(zhǎng)度,縱坐標(biāo)等于AD的長(zhǎng)度,又A
1位于第二象限,故A
1的坐標(biāo)為(-3,3).
(2)由(1)可知,B
1的坐標(biāo)為(-3,1),A
1B
1C向右平移6個(gè)單位得△B
2C
2,B
1的橫坐標(biāo)向右平移6個(gè)單位,即B
2的橫坐標(biāo)為-3+6=3,即點(diǎn)B
2的坐標(biāo)為(3,1).
(3)要求其中心,我們可以連接AA
2,CC
2,分別求他們的中垂線的方程,他們的交點(diǎn)就是旋轉(zhuǎn)中心,易知CC
2的中垂線為x=2,AA
2的斜率為
,其中點(diǎn)Q坐標(biāo)為(-
,
),所以其中垂線的方程為5y+7x+1=0,與x=2聯(lián)立,解得交點(diǎn)P坐標(biāo)為(2,-3).
的面積等于扇形PAB的面積減去△PAB的面積,易知PA=
,PQ=
,可知∠APQ=60°,即∠APA
2=120°.所以
=S
扇PAA2-S
△APQ.同理可求出
,
.即S=
+
+
.
解答:解:(1)取點(diǎn)D(-1,-2),可知A,B,D三點(diǎn)同一直線上,所以△ACD為直角三角形(∠ADC=90°),△ACD繞C點(diǎn)旋轉(zhuǎn),易知CD與x軸重合,A
1D∥y軸,即A′橫坐標(biāo)的數(shù)值等于CD的長(zhǎng)度加上OC的長(zhǎng)度,縱坐標(biāo)等于AD的長(zhǎng)度,又A
1位于第二象限,故A
1的坐標(biāo)為(-3,3).A
1(-3,3);
(2)由(1)可知,B
1的坐標(biāo)為(-3,1),A
1B
1C向右平移6個(gè)單位得△B
2C
2,B
1的橫坐標(biāo)向右平移6個(gè)單位,即B
2的橫坐標(biāo)為-3+6=3,即點(diǎn)B
2的坐標(biāo)為(3,1).B
2(3,1);
(3)連接AA
2,CC
2,易知AA
2的斜率為
,其中點(diǎn)Q的坐標(biāo)為(-
,
),所以其中垂線的方程為5y+7x+1=0,CC
2的中垂線為x=2,與x=2聯(lián)立,解得交點(diǎn)P坐標(biāo)為(2,-3).易知PA=
,PQ=
,可知∠APQ=60°,即∠APA
2=120°.所以
=S
扇PAA2-S
△APQ.同理可求出
,
.即S=
+
+
,經(jīng)計(jì)算S=5π.
點(diǎn)評(píng):此題較為復(fù)雜,是對(duì)學(xué)生對(duì)旋轉(zhuǎn)問(wèn)題的靈活運(yùn)用以及對(duì)學(xué)生要求一定的計(jì)算能力.