【題目】計(jì)算與解方程
(1)計(jì)算: ﹣3×(﹣2)2;
(2)用公式法解:x2﹣3x﹣1=0.

【答案】
(1)解:原式=2﹣3×4=2﹣12=﹣10
(2)解:∵a=1,b=﹣3,c=﹣1,

∴b2﹣4ac=9+4=13>0,

∴x= ,

即x1= ,x2=


【解析】(1)先計(jì)算乘方和根號,再計(jì)算乘法,最后計(jì)算加減即可;(2)公式法求解可得.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次根式的性質(zhì)與化簡的相關(guān)知識,掌握1、如果被開方數(shù)是分?jǐn)?shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進(jìn)行化簡.2、如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來,以及對公式法的理解,了解要用公式解方程,首先化成一般式.調(diào)整系數(shù)隨其后,使其成為最簡比.確定參數(shù)abc,計(jì)算方程判別式.判別式值與零比,有無實(shí)根便得知.有實(shí)根可套公式,沒有實(shí)根要告之.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級同學(xué)到距學(xué)校6km的郊外游玩,一部分同學(xué)步行,另一部分同學(xué)騎車。如圖, 分別表示步行和騎車的同學(xué)前往目的地所走的路程y(km)與所用的時間x(min)之間的函數(shù)圖像,則下列判斷錯誤的是

A. 騎車的同學(xué)比步行的同學(xué)晚出發(fā)30min

B. 步行的同學(xué)的速度是6km/h

C. 騎車的同學(xué)從出發(fā)到追上步行的同學(xué)用了20min

D. 騎車的同學(xué)和步行的同學(xué)同時到達(dá)目的地

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用火柴棒按如圖所示方式搭圖形,按照這種方式搭下去,搭第9個圖形需火柴棒的根數(shù)是(

A. 48 B. 54 C. 60 D. 以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

①若△ABC經(jīng)過平移后得到△A1B1C1 , 已知點(diǎn)C1的坐標(biāo)為(4,0),寫出頂點(diǎn)A1 , B1的坐標(biāo);
②若△ABC和△A2B2C2關(guān)于原點(diǎn)O成中心對稱圖形,寫出△A2B2C2的各頂點(diǎn)的坐標(biāo);
③將△ABC繞著點(diǎn)O按順時針方向旋轉(zhuǎn)90°得到△A3B3C3 , 寫出△A3B3C3的各頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一次函數(shù)y=x+6,下列結(jié)論錯誤的是(

A. 函數(shù)值隨自變量增大而增大 B. 函數(shù)圖像與軸正方向成45°

C. 函數(shù)圖像不經(jīng)過第四象限 D. 函數(shù)圖像與軸交點(diǎn)坐標(biāo)是(06

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,則D點(diǎn)的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線形拱橋,當(dāng)拱頂高離水面2m時,水面寬4m.若水面下降了2.5m,水面的寬度增加多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l:軸交于點(diǎn)A,將直線l繞點(diǎn)A順時針旋轉(zhuǎn)75后,所得直線的解析式為( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AB是圓O的直徑,圓O過BC的中點(diǎn)D,且DE⊥AC.

(1)求證:DE是圓O的切線;
(2)若∠C=30°,CD=10cm,求圓O的半徑.

查看答案和解析>>

同步練習(xí)冊答案