【題目】問題提出:
(1)如圖1,在四邊形ABCD中,AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∠ADC=60°,則四邊形ABCD的面積為 ;
問題探究:
(2)如圖2,在四邊形ABCD中,∠BAD=∠BCD=90°,∠ABC=135°,AB=2,BC=3,在AD、CD上分別找一點E、F,使得△BEF的周長最小,并求出△BEF的最小周長;
問題解決:
(3)如圖3,在四邊形ABCD中,AB=BC=2,CD=10,∠ABC=150°,∠BCD=90°,則在四邊形ABCD中(包含其邊沿)是否存在一點E,使得∠AEC=30°,且使四邊形ABCE的面積最大.若存在,找出點E的位置,并求出四邊形ABCE的最大面積;若不存在,請說明理由.
【答案】(1)3;(2)△BEF的最小周長為2;(3)8+4,見解析
【解析】
(1)利用SAS可證明△ABD≌△CBD,可得∠ADB=∠CDB=30°,進(jìn)而可求AB的長,進(jìn)一步即可求出四邊形ABCD的面積;
(2)如圖,作點B關(guān)于AD的對稱點M,作點B關(guān)于CD的對稱點N,連接MN,交AD于點E,交CD于點F,由軸對稱的性質(zhì)可得△BEF的最小周長即為MN的長,再由勾股定理求出MN的長即得結(jié)果;
(3)作△ABC的外接圓,交CD于點E,連接AC,AE,過點A作AM⊥CD于點M,作BN⊥AM于點N,由圓內(nèi)接四邊形的性質(zhì)可得∠AEC=30°,由矩形的性質(zhì)和解直角三角形的知識可求得AM與CM的長,進(jìn)一步即可求得AE與CE的長,進(jìn)而確定當(dāng)點E在AC的垂直平分線上時,S四邊形ABCE最大,問題即得解決.
解:(1)∵AB=BC,AD=CD=3,∠BAD=∠BCD=90°,
∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB,
∵∠ADC=60°,
∴∠ADB=∠CDB=30°,
∴AB=BC=,
∴四邊形ABCD的面積=2S△ABD=2××3×=3.
故答案為:3;
(2)如圖,作點B關(guān)于AD的對稱點M,作點B關(guān)于CD的對稱點N,連接MN,交AD于點E,交CD于點F,過點M作MG⊥BC,交CB的延長線于點G,
∵點B,點M關(guān)于AD對稱,∴BE=EM,AB=AM=2,∴BM=4,
∵點B,點N關(guān)于CD對稱,∴BF=FN,BC=CN=3,
∴△BEF的周長=BE+BF+EF=NF+EF+EM=MN,
由軸對稱的性質(zhì)知:此時MN的長即為△BEF周長的最小值.
∵∠ABC=135°,∴∠GBM=45°,
∴∠GBM=∠GMB=45°,
∴BG=GM,
∵BG2+GM2=BM2,
∴BG=4=GM,
∴GN=BG+BC+CN=4+3+3=10,
∴在Rt△GMN中,MN===2,
∴△BEF的最小周長為2.
(3)作△ABC的外接圓,交CD于點E,連接AC,AE,過點A作AM⊥CD于點M,作BN⊥AM于點N,
∵四邊形ABCE是圓內(nèi)接四邊形,
∴∠ABC+∠AEC=180°,
∴∠AEC=30°,
∵BN⊥AM,AM⊥CD,∠BCD=90°,
∴四邊形BCMN是矩形,
∴BC=MN=2,BN=CM,∠CBN=90°,
∵∠ABC=150°,
∴∠ABN=60°,∴∠BAN=30°,
∴BN=AB=1,AN=BN=,
∴AM=+2,CM=1,
∵∠AEC=30°,AM⊥CE,
∴AE=2AM=2+4,ME=AM=3+2,
∴CE=CM+ME=4+2=AE,
∴點E在AC垂直平分線上,
∵S四邊形ABCE=S△ABC+S△ACE,且S△ABC是定值,AC長度是定值,點E在△ABC的外接圓上,
∴當(dāng)點E在AC的垂直平分線上時,S四邊形ABCE最大,
此時S四邊形ABCE=S四邊形ABCM+S△AME=××1+=8+4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,點O在△ABC的BC邊上,⊙O經(jīng)過點A、C,且與BC相交于點 D.點E是下半圓弧的中點,連接AE交BC于點F,已知AB=BF.
(1)求證:AB是⊙O的切線;
(2)若OC=3,OF=1,求cosB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD中,點E是BC的中點,過點B作BG⊥AE于點G,過點C作CF垂直BG的延長線于點H,交AD于點F
(1)求證:△ABG≌△BCH;
(2)如圖2,連接AH,連接EH并延長交CD于點I;
求證:① AB2=AE·BH;② 求的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,為對角線上任意一點(不與重合)連接,過點M作交(或的延長線)于點,連接.
感知:如圖①,當(dāng)M為中點時,容易證(不用證明);
探究:如圖②,點M為對角線上任意一點(不與重合)請?zhí)骄?/span>與的數(shù)量關(guān)系,并證明你的結(jié)論.
應(yīng)用:(1)直接寫出的面積S的取值范圍;
(2)若,則與的數(shù)量關(guān)系是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開展了主題為“垃圾分類,綠色生活新時尚”的宣傳活動,為了解學(xué)生對垃圾分類知識的掌握情況,該校環(huán)保社團(tuán)成員在校園內(nèi)隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,將他們的得分按優(yōu)秀、良好、合格、不合格四個等級進(jìn)行統(tǒng)計,并繪制了如下不完整的統(tǒng)計表和條形統(tǒng)計圖.
等級 | 頻數(shù) | 頻率 |
優(yōu)秀 | 20 | |
良好 | ||
合格 | 10 | |
不合格 | 5 |
請根據(jù)以上信息,解答下列問題:
(1)本次調(diào)查隨機(jī)抽取了______名學(xué)生;表中______,______;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)若全校有2000名學(xué)生,請你估計該校掌握垃圾分類知識達(dá)到“優(yōu)秀”和“良好”等級的學(xué)生共有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國慶期間某外地旅行團(tuán)來重慶的網(wǎng)紅景點打卡,游覽結(jié)束后旅行社對該旅行團(tuán)做了一次“我最喜愛的巴渝景點”問卷調(diào)查(每名游客都填了調(diào)査表,且只選了一個景點),統(tǒng)計后發(fā)現(xiàn)洪崖洞、長江索道、李子壩輕軌站、磁器口榜上有名.其中選李子壩輕軌站的人數(shù)比選磁器口的少人;選洪崖洞的人數(shù)不僅比選磁器口的多,且為整數(shù)倍;選磁器口與洪崖洞的人數(shù)之和是選李子壩輕軌站與長江索道的人數(shù)之和的倍;選長江索道與洪崖洞的人數(shù)之和比選李子壩輕軌站與磁器口的人數(shù)之和多24人.則該旅行團(tuán)共有_______人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作與證明:如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.
結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;
結(jié)論2:DM、MN的位置關(guān)系是 ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小東從A地出發(fā)以某一速度向B地走去,同時小明從B地出發(fā)以另一速度向A地而行,如圖所示,圖中的線段y1、y2分別表示小東、小明離B地的距離y1、y2(千米)與所用時間x(小時)的關(guān)系.
(1)寫出y1、y2與x的關(guān)系式:______,_______;
(2)試用文字說明:交點P所表示的實際意義.
(3)試求出A、B兩地之間的距離.
(4)求出小東、小明相距4千米時出發(fā)的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(1,﹣2),B(2,﹣1),C(4,﹣3).
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)以點O為位似中心,在網(wǎng)格中畫出△A1B1C1的位似圖形△A2B2C2,使△A2B2C2與△A1B1C1的相似比為2:1;
(3)設(shè)點P(a,b)為△ABC內(nèi)一點,則依上述兩次變換后點P在△A2B2C2內(nèi)的對應(yīng)點P2的坐標(biāo)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com