【題目】閱讀下列材料:一般地,個(gè)相同的因數(shù)相乘 ,記為.如,此時(shí),叫做以為底的對數(shù),記為(即).一般地,若,(且,),則叫做以為底的對數(shù),記為(即).如,則叫做以為底的對數(shù),記為(即).
(1)計(jì)算以下各對數(shù)的值:__________,__________,__________.
(2)觀察(1)中三數(shù)、,之間滿足怎樣的關(guān)系式,、、之間又滿足怎樣的關(guān)系式;
(3)由(2)的結(jié)果,你能歸納出一個(gè)一般性的結(jié)論嗎?__________.(且,,)
(4)根據(jù)冪的運(yùn)算法則:以及對數(shù)的含義證明上述結(jié)論.
【答案】(1)2,4,6;(2)log24+log216=log264;(3)logaM+logaN=loga(MN);(4)證明見解析.
【解析】
(1)根據(jù)對數(shù)的定義求解;
(2)認(rèn)真觀察,不難找到規(guī)律:4×16=64,log24+log216=log264;
(3)有特殊到一般,得出結(jié)論:logaM+logaN=loga(MN);
(4)首先可設(shè)logaM=b1,logaN=b2,再根據(jù)冪的運(yùn)算法則:anam=an+m以及對數(shù)的含義證明結(jié)論.
(1)∵22=4,∴log24=2,
∵24=16,∴log216=4,
∵26=64,∴log264=6;
(2)4×16=64,log24+log216=log264;
(3)logaM+logaN=loga(MN);
(4)證明:設(shè)logaM=x,logaN=y,
則ax=M,ay=N,
∴MN=axay=ax+y,
∴x+y=loga(MN)即logaM+logaN=loga(MN).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共50個(gè),小穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是試驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):
摸到球的次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù) | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的概率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)請估計(jì)當(dāng)很大時(shí),摸到白球的頻率將會接近______;(精確到0.1);
(2)假如隨機(jī)摸一次,摸到白球的概率P(白球)=______;
(3)試估算盒子里白色的球有多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在4×4的正方形(每個(gè)小正方形的邊長均為1)網(wǎng)格中,以A為頂點(diǎn),其他三個(gè)頂點(diǎn)都在格點(diǎn)(網(wǎng)格的交點(diǎn))上,且面積為2的平行四邊形共有多少個(gè)?( )
A.12B.16C.24D.25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列說法:()單項(xiàng)式的系數(shù)、次數(shù)都是;()多項(xiàng)式的系數(shù)是,它是三次二項(xiàng)式;()單項(xiàng)式與都是七次單項(xiàng)式;(4)單項(xiàng)式和的系數(shù)分別是或;()是二次單項(xiàng)式;()與都是整式,其中正確的說法有( ).
A.個(gè)B. C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點(diǎn),點(diǎn)P在優(yōu)弧上.
(1)求出A,B兩點(diǎn)的坐標(biāo);
(2)試確定經(jīng)過A、B且以點(diǎn)P為頂點(diǎn)的拋物線解析式;
(3)在該拋物線上是否存在一點(diǎn)D,使線段OP與CD互相平分?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在銳角△ABC中,AB=5,tanC=3,BD⊥AC于點(diǎn)D,BD=3,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度沿AB向終點(diǎn)B運(yùn)動(dòng),過點(diǎn)P作PE∥AC交邊BC于點(diǎn)E,以PE為邊作Rt△PEF,使∠EPF=90°,點(diǎn)F在點(diǎn)P的下方,且EF∥AB.設(shè)△PEF與△ABD重疊部分圖形的面積為S(平方單位)(S>0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒)(t>0).
(1)求線段AC的長.
(2)當(dāng)△PEF與△ABD重疊部分圖形為四邊形時(shí),求S與t之間的函數(shù)關(guān)系式.
(3)若邊EF與邊AC交于點(diǎn)Q,連結(jié)PQ,如圖②.
①當(dāng)PQ將△PEF的面積分成1:2兩部分時(shí),求AP的長.
②直接寫出PQ的垂直平分線經(jīng)過△ABC的頂點(diǎn)時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;平移△ABC,若點(diǎn)A的對應(yīng)點(diǎn)A2的坐標(biāo)為(0,-4),畫出平移后對應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標(biāo);
(3)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,過點(diǎn)A作⊙O的切線,交OC的延長線于點(diǎn)D,∠D=30°
(1)求∠B的度數(shù);
(2)若OD⊥AB,BC=5,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)課上,王老師在黑板上畫出一幅圖,并寫下了四個(gè)等式:
①,②,③,④.
(1)上述四個(gè)條件中,由哪兩個(gè)條件可以判定是等腰三角形?用序號寫出所有成立的情形.
(2)請選擇(1)中的一種情形,寫出證明過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com