【題目】已知:如圖,△ABC中,AB=2,BC=4,D為BC邊上一點,BD=1.
(1)求證:△ABD∽△CBA;
(2)若DE∥AB交AC于點E,請再寫出另一個與△ABD相似的三角形,并直接寫出DE的長.

【答案】
(1)證明:∵AB=2,BC=4,BD=1,

,

∵∠ABD=∠CBA,

∴△ABD∽△CBA


(2)解:∵DE∥AB,

∴△CDE∽△CBA,

∴△ABD∽△CDE,

∴DE=1.5.


【解析】(1)在△ABD與△CBA中,有∠B=∠B,根據(jù)已知邊的條件,只需證明夾此角的兩邊對應成比例即可;(2)由(1)知△ABD∽△CBA,又DE∥AB,易證△CDE∽△CBA,則:△ABD∽△CDE,然后根據(jù)相似三角形的對應邊成比例得出DE的長.
【考點精析】本題主要考查了相似三角形的判定與性質的相關知識點,需要掌握相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在等邊△ABC中,E為BC邊上一點,G為BC延長線上一點,過點E作∠AEM=60°,交∠ACG的平分線于點M.
(1)如圖(1),當點E在BC邊的中點位置時,通過測量AE,EM的長度,猜想AE與EM滿足的數(shù)量關系是;

(2)如圖(2),小晏通過觀察、實驗,提出猜想:當點E在BC邊的任意位置時,始終有AE=EM.小晏把這個猜想與同學進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:在BA上取一點H使AH=CE,連接EH,要證AE=EM,只需證△AHE≌△ECM.
想法2:找點A關于直線BC的對稱點F,連接AF,CF,EF.(易證∠BCF+∠BCA+ACM=180°,所以M,C,F(xiàn)三點在同一直線上)要證AE=EM,只需證△MEF為等腰三角形.
想法3:將線段BE繞點B順時針旋轉60°,得到線段BF,連接CF,EF,要證AE=EM,只需證四邊形MCFE為平行四邊形.
請你參考上面的想法,幫助小晏證明AE=EM.(一種方法即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,正確的是(
A.“射擊運動員射擊一次,命中靶心”是必然事件
B.不可能事件發(fā)生的概率為0
C.隨機事件發(fā)生的概率為
D.投擲一枚質地均勻的硬幣100次,正面朝上的次數(shù)一定為50次

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校體育場看臺的側面如圖陰影部分所示,看臺有四級高度相等的小臺階.已知看臺高為1.6米,現(xiàn)要做一個不銹鋼的扶手AB及兩根與FG垂直且長為l米的不銹鋼架桿AD和BC(桿子的底端分別為D,C),且∠DAB=66.5°.
(1)求點D與點C的高度差DH;
(2)求所用不銹鋼材料的總長度l.(即AD+AB+BC,結果精確到0.1米) (參考數(shù)據(jù):sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論: ①4a+b=0;
②9a+c<3b;
③25a+5b+c=0;
④當x>2時,y隨x的增大而減小.
其中正確的結論有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正比例函數(shù)y1=mx(m>0)的圖象與反比例函數(shù)y2= (k≠0)的圖象交于點A(n,4)和點B,AM⊥y軸,垂足為M.若△AMB的面積為8,則滿足y1>y2的實數(shù)x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,反比例函數(shù)y= (x>0)的圖象經(jīng)過點A(2 ,1),射線AB與反比例函數(shù)圖象交于另一點B(1,a),射線AC與y軸交于點C,∠BAC=75°,AD⊥y軸,垂足為D.
(1)求k的值;
(2)求tan∠DAC的值及直線AC的解析式;
(3)如圖2,
M是線段AC上方反比例函數(shù)圖象上一動點,過M作直線l⊥x軸,與AC相交于點N,連接CM,求△CMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,AD平分∠BAC交⊙O于點D,過點D作DE∥BC交AC的延長線于點E.
(1)試判斷DE與⊙O的位置關系,并證明你的結論;
(2)若∠E=60°,⊙O的半徑為5,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知雙曲線y= (x>0),直線l1:y﹣ =k(x﹣ )(k<0)過定點F且與雙曲線交于A,B兩點,設A(x1 , y1),B(x2 , y2)(x1<x2),直線l2:y=﹣x+

(1)若k=﹣1,求△OAB的面積S;
(2)若AB= ,求k的值;
(3)設N(0,2 ),P在雙曲線上,M在直線l2上且PM∥x軸,問在第二象限內是否存在一點Q,使得四邊形QMPN是周長最小的平行四邊形?若存在,請求出Q點的坐標.

查看答案和解析>>

同步練習冊答案