【題目】已知:分別是的高,角平分線,,則的度數(shù)為________________度.
【答案】20或50
【解析】
分鈍角三角形或銳角三角形兩種情形分別求解即可.
解:如圖,當△ABC是鈍角三角形時,
∵AD⊥BD,
∴∠ADC=90°,
∵∠ACD=60°,∠ACD=∠B+∠BAC,∠B=20°,
∴∠BAC=∠ACD -∠B =40°,∠CAD=90°-∠ACD=90°- 60°=30°
∵AE平分∠BAC,
∴∠BAE=∠CAE=∠BAC=20°,
∴∠EAD=∠CAD+∠CAE=30°+20°=50°.
如圖,當△ABC是銳角三角形時,
∵∠C=60°,∠B=20°,
∴∠BAC=100°,∠BAD= =90°-20°=70°,
∵AE平分∠BAC,
∴∠BAE=∠BAC=50°,
∴∠EAD=∠DAB-∠BAE=70°-50°=20°.,
綜上所述:∠EAD=50°或20°.
故答案為:50或20.
科目:初中數(shù)學 來源: 題型:
【題目】在□ABCD中,BE⊥CD于點E,點F在AB上,且AF=CE,連接DF.
(1)求證:四邊形BEDF是矩形;
(2)連接CF,若CF平分∠BCD,且CE=3,BE=4,求矩形BEDF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展了為期一周的“敬老愛親”社會活動,為了解情況,學生會隨機調(diào)查了部分學生在這次活動中做家務的時間,并將統(tǒng)計的時間(單位:小時)分成5組,A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成兩幅不完整的統(tǒng)計圖(如圖).
請根據(jù)圖中提供的信息,解答下列問題:
(1)學生會隨機調(diào)查了 名學生;
(2)補全頻數(shù)分布直方圖;
(3)若全校有900名學生,估計該校在這次活動中做家務的時間不少于2.5小時的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,D是BC邊上一點,以DB為直徑的⊙O經(jīng)過AB的中點E,交AD的延長線于點F,連接EF.
(1)求證:∠1=∠F;
(2)若sinB=,EF=2,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,點D、E分別是邊BC、CA上的點,且BD=CE,AD、BE相交于點O.
(1)求證:△BAE≌△ACD;
(2)求∠AOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊△ABC中,D為射線BC上一點,CE是∠ACB外角的平分線,∠ADE=60°,EF⊥BC于F.
(1)如圖1,若點D在線段BC上,證明:∠BAD=∠EDC;
(2)如圖1,若點D在線段BC上,證明:①AD=DE;②BC=DC+2CF(提示:構造全等三角形);
(3)如圖2,若點D在線段BC的延長線上,直接寫出BC、DC、CF三條線段之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=3,BC=2,以點A為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)矩形ABCD,旋轉(zhuǎn)角為α(0°<α<180°),得到矩形AEFG,點B、點C、點D的對應點分別為點E、點F、點G.
(1)如圖①,當點E落在DC邊上時,直寫出線段EC的長度為 ;
(2)如圖②,當點E落在線段CF上時,AE與DC相交于點H,連接AC,
①求證:△ACD≌△CAE;
②直接寫出線段DH的長度為 .
(3)如圖③設點P為邊FG的中點,連接PB,PE,在矩形ABCD旋轉(zhuǎn)過程中,△BEP的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一平面直角坐標系中,函數(shù)y=mx+m和函數(shù)y=-mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com