【題目】如圖,ΔABC中,點(diǎn)EBC邊上,AEAB,將線段ACA點(diǎn)旋轉(zhuǎn)到AF的位置使得∠CAF=∠BAE,連接EF,EFAC交于點(diǎn)G

1)求證:EFBC;

2)若∠ABC=60,∠ACB=25,求∠FGC的度數(shù).

【答案】(1)見(jiàn)解析;(285°

【解析】

1)由旋轉(zhuǎn)的性質(zhì)可得AC=AF,利用SAS證明△ABC≌△AEF,根據(jù)全等三角形的對(duì)應(yīng)邊相等即可得出EF=BC;
2)先證明△ABC是等邊三角形,求出∠AEB的度數(shù),再根據(jù)△ABC≌△AEF求出∠AEF的度數(shù),進(jìn)而求出∠GEC的度數(shù),再根據(jù)三角形外角的性質(zhì)即可求出∠FGC的度數(shù).

1)證明:∵∠CAF=BAE
∴∠BAC=EAF
∵將線段ACA點(diǎn)旋轉(zhuǎn)到AF的位置,
AC=AF
在△ABC與△AEF中,

∴△ABC≌△AEFSAS),
EF=BC

2)解:∵AB=AE,∠ABC=60°
∴△ABC是等邊三角形,

∴∠AEB=60°
∵△ABC≌△AEF
∴∠AEF=ABE=60°,

GEC=180°-60°-60°=60°,
∴∠FGC=GEC +C=60°+25°=85°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的方程rx2+(r+2)x+r﹣1=0有根只有整數(shù)根的一切有理數(shù)r的值有(  )個(gè).

A. 1 B. 2 C. 3 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】5月份,某品牌襯衣正式上市銷售.51日的銷售量為10件,52日的銷售量為35件,以后每天的銷售量比前一天多25件,直到日銷售量達(dá)到最大后,銷售量開(kāi)始逐日下降,至此,每天的銷售量比前一天少15件,直到531日銷售量為0.設(shè)該品牌襯衣的日銷量為p(件),銷售日期為n(日),pn之間的關(guān)系如圖所示.

(1)寫出p關(guān)于n的函數(shù)關(guān)系式p=   (注明n的取值范圍);

(2)經(jīng)研究表明,該品牌襯衣的日銷量超過(guò)150件的時(shí)間為該品牌襯衣的流行期.請(qǐng)問(wèn):該品牌襯衣本月在市面的流行期是多少天?

(3)該品牌襯衣本月共銷售了   件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,進(jìn)價(jià)是20元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是30元時(shí),銷售量是500件,而銷售單價(jià)每漲1元,就會(huì)少售出10件玩具.

(1)不妨設(shè)該種品牌玩具的銷售單價(jià)為x元(x>40),請(qǐng)你分別用x的代數(shù)式來(lái)表示銷售量y件和銷售該品牌玩具獲得利潤(rùn)w元,并把結(jié)果填寫在表格中:

銷售單價(jià)(元)

x

銷售量y(件)

__________

銷售玩具獲得利潤(rùn)w(元)

__________

(2)在(1)問(wèn)條件下,若商場(chǎng)獲得了8000元銷售利潤(rùn),求該玩具銷售單價(jià)x應(yīng)定為多少元.

(3)在(1)問(wèn)條件下,若玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于35元,且商場(chǎng)要完成不少于350件的銷售任務(wù),求商場(chǎng)銷售該品牌玩具獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方格紙中每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)連線為邊的多邊形稱為格點(diǎn)多邊形

1)在圖1中確定格點(diǎn)D,并畫出一個(gè)以A、B、C、D為頂點(diǎn)的四邊形,使其為軸對(duì)稱圖形(一種情況即可);

2)直接寫出圖2FGH的面積是   ;

3)在圖3中畫一個(gè)格點(diǎn)正方形,使其面積等于17

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:3+2=(1+2,善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,這樣小明就找到了一種把部分a+b的式子化為平方式的方法。
請(qǐng)我仿照小明的方法探索并解決下列問(wèn)題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n2,用含m、n的式子分別表示a、b,得a=________, b=___________.

(2)若a+4=(m+n2,且a、m、n均為正整數(shù),求a的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點(diǎn)D在拋物線上,DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0t4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖在平面直角坐標(biāo)系中

1作出ABC關(guān)于軸對(duì)稱的并寫出三個(gè)頂點(diǎn)的坐標(biāo) ( 。,(  ),( 。

2直接寫出ABC的面積為 ;

3軸上畫點(diǎn)P使PA+PC最小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E、F分別在BC、CD上,將△ABE沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)處,又將△CEF沿EF折疊,使點(diǎn)C落在射線EBˊAD的交點(diǎn)處,則的值( 。

A. 2 B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案