【題目】如圖,在RtABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.

1)求∠CAD的度數(shù);

2)延長ACE,使CE=AC,試說明DA=DE.

【答案】1302)見解析

【解析】

1)利用“直角三角形的兩個銳角互余”的性質和角平分的性質進行解答;

2)通過證△ACD≌△ECD來推知DADE

1)∵在RtABC中,∠ACB90,∠B30,

∴∠B30,

∴∠CAB60

又∵AD平分∠CAB,

∴∠CADCAB30,即∠CAD30;

2)證明:∵∠ACD+∠ECD180,且∠ACD90,

∴∠ECD90,

∴∠ACD=∠ECD

在△ACD與△ECD中,

,

∴△ACD≌△ECDSAS),

DADE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠A=90°,AB=12,AC=16,點D為邊BC的中點,DEBC交邊AC于點E,點P為射線AB上的一動點,點Q為邊AC上的一動點,且∠PDQ=90°.

(1)求ED、EC的長;

(2)若BP=2,求CQ的長;

(3)若線段PQ與線段DE的交點為F,當△PDF為等腰三角形時,求BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=7.5,AC=9,SABC=.動點PA點出發(fā),沿AB方向以每秒5個單位長度的速度向B點勻速運動,動點QC點同時出發(fā),以相同的速度沿CA方向向A點勻速運動,當點P運動到B點時,P、Q兩點同時停止運動,以PQ為邊作正PQM(P、Q、M按逆時針排序),以QC為邊在AC上方作正QCN,設點P運動時間為t秒.

(1)求cosA的值;

(2)當PQMQCN的面積滿足SPQM=SQCN時,求t的值;

(3)當t為何值時,PQM的某個頂點(Q點除外)落在QCN的邊上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,AB=15AC=13,BC邊上高AD=12,試求△ABC周長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點ECD的中點,將BCE沿BE折疊后得到BEF、且點F在矩形ABCD的內(nèi)部,將BF延長交AD于點G.若,則=__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BDABC的角平分線,CDABC的外角∠ACE的外角平分線,CDBD交于點D.

(1)若∠A=50°,則∠D=   ;

(2)若∠A=80°,則∠D=   ;

(3)若∠A=130°,則∠D=   ;

(4)若∠D=36°,則∠A=   

(5)綜上所述,你會得到什么結論?證明你的結論的準確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某大學生創(chuàng)業(yè)團隊抓住商機,購進一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數(shù)關系,部分數(shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費用80元.

(1)請直接寫出yx之間的函數(shù)關系式;

(2)如果每天獲得160元的利潤,銷售單價為多少元?

(3)設每天的利潤為w元,當銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛貨車從百貨大樓出發(fā)負責送貨,向東走了2千米到達小明家,繼續(xù)向東走了4千米到達小紅家,然后向西走了9千米到達小剛家,最后返回百貨大樓.

1)以百貨大樓為原點,向東為正方向,1個單位長度表示1千米,請你在數(shù)軸上標出小明、小紅、小剛家的位置;

2)小明家與小剛家相距多遠?

3)若貨車每千米耗油0.5升,那么這輛貨車共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解“課程選修”的情況,對報名參加“藝術鑒賞”、“科技制作”、“數(shù)學思維”、“閱讀寫作”這四個選修項目的學生(每人限報一項)進行抽樣調(diào)查.下面是根據(jù)收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中提供的信息,解答下面的問題:

(1)此次共調(diào)查了 名學生,型統(tǒng)計圖中“藝術鑒賞”部分的圓心角是 度.

(2)請把這個條形統(tǒng)計圖補充完整.

(3)現(xiàn)該校共有800名學生報名參加這四個選修項目,請你估計其中有多少名學生選修“科技制作”項目.

查看答案和解析>>

同步練習冊答案