【題目】甲地與丙地由公路連接,乙地在甲、丙兩地之間,一輛汽車在下午1點鐘從離甲地10千米的M地出發(fā)向乙地勻速前進,15分鐘后離甲地20千米,當(dāng)汽車行駛到離甲地150千米的乙地時,接到通知要在下午5點前趕到離乙地30千米的丙地.汽車若按原速能否按時到達(dá)?若能,是在幾點幾時到達(dá);若不能,車速應(yīng)提高到多少才能按時到達(dá)?
【答案】汽車原速不能按時到達(dá),車速應(yīng)提高到60千米/小時才能按時到達(dá)
【解析】
根據(jù)從離甲地10千米的M地出發(fā)向乙地勻速前進,15分鐘后離甲地20千米可求得汽車的速度為40千米/小時,再求得當(dāng)汽車行駛到離甲地150千米的乙地時,此時汽車所用的時間為小時;因接到通知要在下午5點前趕到離乙地30千米的丙地,此時剩時小時,求得小時汽車原速所走的路程,與30比較即可判定汽車按原速能否按時到達(dá);用30除以即可求得提速后的車速.
∵從離甲地10千米的M地出發(fā)向乙地勻速前進,15分鐘后離甲地20千米,
∴汽車的速度為:(20-10)÷ =40(千米/小時);
當(dāng)汽車行駛到離甲地150千米的乙地時,此時汽車所用的時間為:(小時);
因接到通知要在下午5點前趕到離乙地30千米的丙地,此時剩時:5-1-=(小時),
∵40×=20<30,
∴汽車原速不能按時到達(dá).
∵30÷=60(千米/小時),
∴車速應(yīng)提高到60千米/小時才能按時到達(dá).
答:汽車原速不能按時到達(dá),車速應(yīng)提高到60千米/小時才能按時到達(dá).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的中點,過點A作AD⊥AB交BE的延長線于點D,CG平分∠ACB交BD于點G,F(xiàn)為AB邊上一點,連接CF,且∠ACF=∠CBG.求證:
(1)AF=CG;
(2)CF=2DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的正方形網(wǎng)格中,點P是的邊OB上的一點.
(1)過點P畫OB的垂線,交OA于點C;過點P畫OA的垂線,垂足為H;
(2)線段PH的長度是點P到直線__________的距離;
(3)線段__________的長度是點C到直線OB的距離;
(4)線段PC、PH、OC這三條線段大小關(guān)系是__________(用“<”號連接).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)單項式﹣2x3ym與5xn+1y的差是一個單項式,求的值;
(2)化簡求值:(x2+5﹣4x3)﹣2(﹣2x3+5x﹣4),其中x=﹣2;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列變形中:
①由方程=2去分母,得x﹣12=10;
②由方程x=兩邊同除以,得x=1;
③由方程6x﹣4=x+4移項,得7x=0;
④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).
錯誤變形的個數(shù)是( )個.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點O,給出下列四組條件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC。其中一定能判斷這個四邊形是平行四邊形的條件共有
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E、F分別為平行四邊形ABCD的對邊AD、BC上的點,且DE=BF,EM⊥AC于M,FN⊥AC于N,EF交AC于點O,
求證:(1)EM=FN;
(2)EF與MN互相平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個頂點的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4). (Ⅰ)請在圖中,畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
(Ⅱ)以點O為位似中心,將△ABC縮小為原來的 ,得到△A2B2C2 , 請在圖中y軸右側(cè),畫出△A2B2C2 , 并求出∠A2C2B2的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com