如圖,⊙O的半徑為1,A、B、C是圓周上的三點,∠BAC=36°,則劣弧BC的長是( )

A.
B.
C.
D.
【答案】分析:連接OB,OC,依據(jù)同弧所對的圓周角等于圓心角的一半,即可求得劣弧BC的圓心角的度數(shù),然后利用弧長計算公式求解即可.
解答:解:連接OB,OC.
∠BOC=2∠BAC=2×36°=72°,
則劣弧BC的長是:=π.
故選B.
點評:本題考查了弧長的計算公式以及圓周角定理,正確理解圓周角定理是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點,則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點F是BC的中點,那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標原點重合,在直角坐標系中,把橫坐標、縱坐標都是整數(shù)的點稱為格點,則⊙O上格點有
 
個,設L為經過⊙O上任意兩個格點的直線,則直線L同時經過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側,AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點,且MP:PN=1:2.若PA=2,則MN的長為
6
2
6
2

查看答案和解析>>

同步練習冊答案