【題目】如圖,直線與軸、軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為( )
A. B. C. D.
【答案】C
【解析】分析:根據(jù)一次函數(shù)解析式求出點A、B的坐標,再由中點坐標公式求出點C、D的坐標,根據(jù)對稱的性質(zhì)找出點D′的坐標,結(jié)合點C、D′的坐標求出直線CD′的解析式,令y=0即可求出x的值,從而得出點P的坐標.
詳解:作點D關(guān)于x軸的對稱點D′,連接CD′交x軸于點P,此時PC+PD值最小,如圖所示.
令y=x+4中x=0,則y=4,
∴點B的坐標為(0,4);
令y=x+4中y=0,則x+4=0,解得:x=6,
∴點A的坐標為(6,0).
∵點C、D分別為線段AB、OB的中點,
∴點C(3,2),點D(0,2).
∵點D′和點D關(guān)于x軸對稱,
∴點D′的坐標為(0,2).
設直線CD′的解析式為y=kx+b,
∵直線CD′過點C(3,2),D′(0,2),
∴有,解得:,
∴直線CD′的解析式為y=x2.
令y=x2中y=0,則0=x2,解得:x=,
∴點P的坐標為(,0).
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線相交于點O,AC=2,BD=2,將菱形按如圖方式折疊,使點B與點O重合,折痕為EF,則五邊形AEFCD的周長為_____________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B、E分別在AC、DF上,AF分別交BD、CE于點M、N,∠A=∠F,∠1=∠2.
(1)求證:四邊形BCED是平行四邊形;
(2)已知DE=2,連接BN,若BN平分∠DBC,求CN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是( )
A.13=3+10B.25=9+16C.36=15+21D.49=18+31
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)﹣0.125×18×8
(2)﹣24×(﹣+)
(3)91×(﹣36)
(4)﹣4×(﹣8)+(﹣8)×(﹣8)+12×(﹣8)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市規(guī)定了每月用水18立方米以內(nèi)(含18立方米)和用水18立方米以上兩種不同的收費標準,該市的用戶每月應交水費y(元)是用水量x(立方米)的函數(shù),其圖象如圖所示.
(1)若某月用水量為18立方米,則應交水費多少元?
(2)求當x>18時,y關(guān)于x的函數(shù)表達式,若小敏家某月交水費81元,則這個月用水量為多少立方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD和正方形CEFG邊長分別為a和b,正方形CEFG繞點C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正確結(jié)論有( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在鐘面上,點為鐘面的圓心,以點為頂點按要求畫出符合下列要求的角(角的兩邊不經(jīng)過鐘面上的數(shù)字):
(1)在圖1中畫一個銳角,使銳角的內(nèi)部含有2個數(shù)字,且數(shù)字之差的絕對值最大;
(2)在圖2中畫一個直角,使直角的內(nèi)部含有3個數(shù)字,且數(shù)字之積等于數(shù)字之和;
(3)在圖3中畫一個鈍角,使鈍角的內(nèi)部含有4個數(shù)字,且數(shù)字之和最。
(4)在圖4中畫一個平角,使平角的內(nèi)部與外部的數(shù)字之和相等;
(5)在圖5中畫兩個直角,使這兩個直角的內(nèi)部含有的3個數(shù)字之和相等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com