【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點逆時針旋轉(zhuǎn)90°,得到△A1B1C1,將△A1B1C1向右平移6個單位,再向上平移2個單位得到△A2B2C2

(1)畫出△A1B1C1和△A2B2C2;

(2)△ABC經(jīng)旋轉(zhuǎn)、平移后點A的對應(yīng)點分別為A1、A2,請寫出點A1、A2的坐標(biāo);

(3)Pa,b)是△ABC的邊AC上一點,△ABC經(jīng)旋轉(zhuǎn)、平移后點P的對應(yīng)點分別為P1P2,請寫出點P1、P2的坐標(biāo).

【答案】(1)畫圖見解析;(2)A1(﹣4,﹣3),A2(2,﹣1);(3)P1(﹣b,a);P2(﹣b+6,a+2)

【解析】

(1)利用網(wǎng)格特點、旋轉(zhuǎn)的性質(zhì)和平移的性質(zhì)畫圖;

(2)利用所畫圖形寫出點A1、A2的坐標(biāo);

(3)利用(2)的結(jié)論和旋轉(zhuǎn)的性質(zhì)寫出P1的坐標(biāo),利用平移的坐標(biāo)規(guī)律寫出P2的坐標(biāo).

(1)如圖,A1B1C1A2B2C2為所作;

(2)A1(﹣4,﹣3),A2(2,﹣1);

(3)P1(﹣b,a);P2(﹣b+6,a+2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)先化簡,再求值:( ,其中x= ﹣2.
(2)計算:|﹣4|+( 2﹣( ﹣1)0 cos45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】DE分別是ABC的邊AB,AC的中點.

(1)如圖1,點OABC內(nèi)的動點,點OF分別是OB,OC的中點,求證:DEFG是平行四邊形;

(2)如圖2,若BEDC于點O,請問AO的延長線經(jīng)過BC的中點嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進(jìn)行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

當(dāng)均為正整數(shù)時,若,用含m、n的式子分別表示,得   ,   ;

2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2;

3)若,且均為正整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,輪船在A處觀測燈塔C位于北偏西70°方向上,輪船從A處以每小時20海里的速度沿南偏西50°方向勻速航行,1小時后到達(dá)碼頭B處,此時,觀測燈塔C位于北偏西25°方向上,則燈塔C與碼頭B的距離是( )

A.10 海里
B.10 海里
C.10 海里
D.20 海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC,AB=AC,DBC的中點AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,AD于點F,AC于點G.

(1)∠BAC=40°,求∠AEB的度數(shù);

(2)求證:∠AEB=∠ACF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,□ABCD,DEAB,BFCD,垂足分別為E,F.

(1)求證:AE=CF.

(2)求證:四邊形BFDE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖,在直角坐標(biāo)系xOy中,A(﹣1,0)B(3,0),將AB同時分別向上平移2個單位,再向右平移1個單位,得到的對應(yīng)點分別為D,C,連接AD,BC.

(1)直接寫出點C,D的坐標(biāo):C D ;

(2)四邊形ABCD的面積為 ;

(3)點P為線段BC上一動點(不含端點),連接PDPO.求證:∠CDP+BOP=OPD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

有一些相同的房間需要粉刷,一天 3名一級技工去粉刷 8個房間,結(jié)果其中有 50墻面未來得及刷;同樣時間內(nèi) 5名二級技工粉刷了 10個房間之外,還多刷了另外的40 墻面.已知每名同級別的技工每天的工作效率相同,每名一級技工比二級技工每天多刷 10墻面,求每個一級技工和二級技工每天粉刷的墻面各是多少平方米?

查看答案和解析>>

同步練習(xí)冊答案