【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx(k≠0)經(jīng)過點(m,m)(m<0).線段BC的兩個端點分別在x軸與直線y=kx上滑動(B、C均與原點O不重合),且BC=.分別作BP⊥x軸,CP⊥直線y=kx,直線BP、CP交于點P.經(jīng)探究,在整個滑動過程中,O、P兩點間的距離為定值,則該距離為_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陽光通過窗口照到教室內(nèi),豎直窗框在地面上留下2.1 m長的影子如圖所示,已知窗框的影子DE的點E到窗下墻腳的距離CE=3.9 m,窗口底邊離地面的距離BC=1.2 m,試求窗口的高度(即AB的值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象如圖所示,點,是該圖象上的兩點.
(1)求的取值范圍;
(2)比較與的大。
(3)若點在該反比例函數(shù)圖象上,求此反比例函數(shù)的解析式;
(4)若為第一象限上的一點,作軸于點,求的面積(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與軸交于點,與軸交于點,與直線交于點.直線與軸交于點,與軸交于點,與直線交于點,與直線交于點.
(1)點的坐標(biāo)是 ,點的坐標(biāo)是 ,點的坐標(biāo)是 ;
(2)將沿軸折疊后,點的對應(yīng)點為,試判斷點是否在直線上,并說明理由;
(3)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鐵路上A,B兩點相距25 km,C,D為兩村莊,DA⊥AB于點A,CB⊥AB于點B,已知DA=15 km,CB=10 km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C,D兩村到E站的距離相等,則E站應(yīng)建在離A站多少km處?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量豎直旗桿AB的高度,某綜合實踐小組在地面D處豎直放置標(biāo)桿CD,并在地面上水平放置個平面鏡E,使得B,E,D在同一水平線上,如圖所示.該小組在標(biāo)桿的F處通過平面鏡E恰好觀測到旗桿頂A(此時∠AEB=∠FED).在F處測得旗桿頂A的仰角為39.3°,平面鏡E的俯角為45°,F(xiàn)D=1.8米,問旗桿AB的高度約為多少米? (結(jié)果保留整數(shù))(參考數(shù)據(jù):tan39.3°≈0.82,tan84.3°≈10.02)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山東省濟(jì)寧市)如圖,O為坐標(biāo)原點,四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于( )
A. 60B. 80C. 30D. 40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB表示路燈,CD、C′D′表示小明所在兩個不同位置:
(1)分別畫出這兩個不同位置小明的影子;
(2)小明發(fā)現(xiàn)在這兩個不同的位置上,他的影子長分別是自己身高的1倍和2倍,他又量得自己的身高為1.5米,DD′長為3米,你能幫他算出路燈的高度嗎?(B、D、D′在一條直線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:如圖1,在平面直角坐標(biāo)系中,A、B兩點的坐標(biāo)分別為A(x1 , y1),B(x2,y2),AB中點P的坐標(biāo)為(xp,yp).由xp﹣x1=x2﹣xp,得xp= ,同理yp= ,所以AB的中點坐標(biāo)為(,).由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A、B兩點間的距離公式為AB=.這兩公式對A、B在平面直角坐標(biāo)系中其它位置也成立.解答下列問題:
(1)已知M(1,﹣2),N(﹣1,2),直接利用公式填空:MN中點坐標(biāo)為________,MN=________.
(2)如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點,P為AB的中點,過P作x軸的垂線交拋物線于點C.
(a)求A、B兩點的坐標(biāo)及C點的坐標(biāo);
(b)連結(jié)AB、AC,求證△ABC為直角三角形;
(c)將直線l平移到C點時得到直線l′,求兩直線l與l′的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com