【題目】如圖,一只跳蚤在第一象限及x軸、y軸上跳動,第一秒它從原點(diǎn)跳動到點(diǎn)(0,1),第二秒它從點(diǎn)(0,1)跳到點(diǎn)(1,1),然后接著按圖中箭頭所示方向跳動[(0,0)→(0,1)→(1,1)→(1,0)→…],每秒跳動一個單位長度,那么30秒后跳蚤所在位置的坐標(biāo)是___

【答案】(5,5)

【解析】

根據(jù)跳蚤跳到正方形右頂點(diǎn)位置用時規(guī)律及下一步方向知第30秒時跳蚤位于(5,5)位置,下一步向左跳動,

跳蚤跳到(1,1)位置用時1×2=2秒,下一步向左跳動;

跳到(2,2)位置用時2×3=6秒,下一步向下跳動;

跳到(3,3)位置用時3×4=12秒,下一步向左跳動;

跳到(4,4)位置用時4×5=20秒,下一步向下跳動;

由以上規(guī)律可知,跳蚤跳到(n,n)位置用時nn+1)秒,

當(dāng)n為奇數(shù)時,下一步向下跳動;

當(dāng)n為偶數(shù)時,下一步向左跳動;

∴第5×6=30秒時跳蚤位于(5,5)位置,

故答案為(55).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,F(xiàn)CD上一點(diǎn),∠EFD=60°,AEC=2CEF,若6°<BAE<15°,C的度數(shù)為整數(shù),則∠C的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)P是直徑AB上的一點(diǎn)(不與A重合),過點(diǎn)P作AB的垂線交BC于點(diǎn)Q.
(1)在線段PQ上取一點(diǎn)D,使DQ=DC,連接DC,試判斷CD與⊙O的位置關(guān)系,并說明理由.
(2)若cosB= ,BP=6,AP=1,求QC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=6,E是矩形內(nèi)部的一個動點(diǎn),且AE⊥BE,則線段CE的最小值為(
A.
B.2 ﹣2
C.2 ﹣2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)O是等腰△ABC的外心,且∠BOC=60°,底邊BC=2,則△ABC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線,直線與直線分別相交于C、D兩點(diǎn).

(1)如圖a,有一動點(diǎn)P在線段CD之間運(yùn)動(不與C、D兩點(diǎn)重合),問在點(diǎn)P的運(yùn)動過程中,是否始終具有∠3+∠1=∠2這一關(guān)系,為什么?

(2)如圖b,當(dāng)動點(diǎn)P線段CD之外運(yùn)動(不與C、D兩點(diǎn)重合),問上述結(jié)論是否成立?若不成立,試寫出新的結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推廣陽光體育大課間活動,我市某中學(xué)決定在學(xué)生中開設(shè)A:實(shí)心球.B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動項(xiàng)目.為了了解學(xué)生對四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請結(jié)合圖中的信息解答下列問題:

1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?

2)請計(jì)算本項(xiàng)調(diào)查中喜歡立定跳遠(yuǎn)的學(xué)生人數(shù)和所占百分比,并將兩個統(tǒng)計(jì)圖補(bǔ)充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,第一次將三角形變換成三角形,第二次將三角形變換成三角形,第三次將三角形變換成三角形,已知,,,,,

1)觀察每次變換前后的三角形,找出規(guī)律,按這些變換規(guī)律將三角形變換成三角形,求的坐標(biāo);

2)若按第(1)題的規(guī)律將三角形進(jìn)行了次變換,得到三角形,請推測的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是△ABC的內(nèi)心,AE的延長線交BC于點(diǎn)F,交△ABC的外接圓⊙O于點(diǎn)D,連接BD,過點(diǎn)D作直線DM,使∠BDM=∠DAC. (Ⅰ)求證:直線DM是⊙O的切線;
(Ⅱ)求證:DE2=DFDA.

查看答案和解析>>

同步練習(xí)冊答案