【題目】知識背景
我們在第十一章《三角形》中學習了三角形的邊與角的性質,在第十二章《全等三角形》中學習了全等三角形的性質和判定,在十三章《軸對稱》中學習了等腰三角形的性質和判定.在一些探究題中經常用以上知識轉化角和邊,進而解決問題
問題初探
如圖(1),△ABC中,∠BAC=90°,AB=AC,點D是BC上一點,連接AD,以AD為一邊作△ADE,使∠DAE=90°,AD=AE,連接BE,猜想BE和CD有怎樣的數量關系,并說明理由.
類比再探
如圖(2),△ABC中,∠BAC=90°,AB=AC,點M是AB上一點,點D是BC上一點,連接MD,以MD為一邊作△MDE,使∠DME=90°,MD=ME,連接BE,則∠EBD= .(直接寫出答案,不寫過程,但要求作出輔助線)
方法遷移
如圖(3),△ABC是等邊三角形,點D是BC上一點,連接AD,以AD為一邊作等邊三角形ADE,連接BE,則BD、BE、BC之間有怎樣的數量關系? (直接寫出答案,不寫過程).
拓展創(chuàng)新
如圖(4),△ABC是等邊三角形,點M是AB上一點,點D是BC上一點,連接MD,以MD為一邊作等邊三角形MDE,連接BE.猜想∠EBD的度數,并說明理由.
【答案】問題初探:BE=CD,理由見解析;類比再探:∠EBD=90°,輔助線見解析;方法遷移:BC=BD+BE;拓展創(chuàng)新:∠EBD=120°,理由見解析
【解析】
問題初探:根據余角的性質可得∠BAE=∠CAD,然后可根據SAS證明△BAE≌△CAD,進而可得結論;
類比再探:過點M作MF∥AC交BC于點F,如圖(5),可得△BMF是等腰直角三角形,仿問題初探的思路利用SAS證明△BME≌△FMD,可得∠MBE=∠MFD=45°,進而可得結果;
方法遷移:根據等邊三角形的性質和角的和差關系可得∠BAE=∠CAD,然后可根據SAS證明△BAE≌△CAD,進而可得結論;
拓展創(chuàng)新:過點M作MG∥AC交BC于點G,如圖(6),易證△BMG是等邊三角形,仿方法遷移的思路利用SAS證明△BME≌△GMD,可得∠MBE=∠MGB=60°,進而可得結論.
解:問題初探:BE=CD.
理由:如圖(1),∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,
∵AB=AC,AE=AD,
∴△BAE≌△CAD(SAS),
∴BE=CD;
類比再探:
在圖(2)中過點M作MF∥AC交BC于點F,如圖(5),則∠BMF=∠A=90°,∠BFM=∠C=45°,∴MB=MF,
∵∠DME=∠BMF=90°,∴∠BME=∠DMF,
∵MB=MF,ME=MD,
∴△BME≌△FMD(SAS),
∴∠MBE=∠MFD=45°;
∴∠EBD=∠MBE+∠ABC=90°.
故答案為:90°;
方法遷移:BC=BD+BE.
理由:如圖(3),∵△ABC和△ADE是等邊三角形,∴∠DAE=∠BAC=60°,∴∠BAE=∠CAD,
∵AB=AC,AE=AD,∴△BAE≌△CAD(SAS),
∴BE=CD,∴BC=BD+CD=BD+BE;
拓展創(chuàng)新:∠EBD=120°.
理由:在圖(4)中過點M作MG∥AC交BC于點G,如圖(6),則∠BMG=∠A=60°,∠BGM=∠C=60°,
∴△BMG是等邊三角形,∴BM=GM,
∵∠DME=∠BMG=60°,∴∠BME=∠DMG,
∵ME=MD,∴△BME≌△GMD(SAS),
∴∠MBE=∠MGB=60°,
∴∠EBD=∠MBE+∠MBG=120°.
科目:初中數學 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將一等邊三角形的三條邊各8等分,按順時針方向(圖中箭頭方向)標注各等分點的序號0、1、2、3、4、5、6、7、8,將不同邊上的序號和為8的兩點依次連接起來,這樣就建立了“三角形”坐標系.在建立的“三角形”坐標系內,每一點的坐標用過這一點且平行(或重合)于原三角形三條邊的直線與三邊交點的序號來表示(水平方向開始,按順時針方向),如點的坐標可表示為(1,2,5),點的坐標可表示為(4,1,3),按此方法,則點的坐標可表示為( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2,BC=5,E、P分別在AD.BC上,且DE=BP=1.連接BE,EC,AP,DP,PD與CE交于點F,AP與BE交于點H.
(1)判斷△BEC的形狀,并說明理由;
(2)判斷四邊形EFPH是什么特殊四邊形,并證明你的判斷;
(3)求四邊形EFPH的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點E、F,若點D為底邊BC的中點,點M為線段EF上一動點,則△BDM的周長的最小值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校組織一項球類對抗賽,在本校隨機調查了若干名學生,對他們每人最喜歡的球類運動進行了統(tǒng)計,并繪制如圖1、圖2所示的條形和扇形統(tǒng)計圖.
根據統(tǒng)計圖中的信息,解答下列問題:
(1)求本次被調查的學生人數,并補全條形統(tǒng)計圖;
(2)若全校有1500名學生,請你估計該校最喜歡籃球運動的學生人數;
(3)根據調查結果,請你為學校即將組織的一項球類比賽提出合理化建議.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線相交于點D,DE⊥AB交AB的延長線于點E,DF⊥AC于點F,現有下列結論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知 OP 平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解學生的安全意識情況,在全校范圍內隨機抽取部分學生進行問卷調查,根據調查結果,把學生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.
根據以上信息,解答下列問題:
(1)這次調查一共抽取了 名學生,其中安全意識為“很強”的學生占被調查學生總數的百分比是 ;
(2)請將條形統(tǒng)計圖補充完整;
(3)該校有1800名學生,現要對安全意識為“淡薄”、“一般”的學生強化安全教育,根據調查結果,估計全校需要強化安全教育的學生約有 名.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com