為深化“攜手節(jié)能低碳,共建碧水藍天”活動,發(fā)展“低碳經濟”,某單位進行技術革新,讓可再生資源重新利用.今年1月份,再生資源處理量為40噸,從今年1月1日起,該單位每月再生資源處理量每一個月將提高10噸.月處理成本(元)與月份之間的關系可近似地表示為:,每處理一噸再生資源得到的新產品的售價定為100元.若該單位每月再生資源處理量為y(噸),每月的利潤為w(元).
(1)分別求出y與x,w與x的函數關系式;
(2)在今年內該單位哪個月獲得利潤達到5800元?
(3)隨著人們環(huán)保意識的增加,該單位需求的可再生資源數量受限.今年三月的再生資源處理量比二月份減少了m%,該新產品的產量也隨之減少,其售價比二月份的售價增加了%.四月份,該單位得到國家科委的技術支持,使月處理成本比二月份的降低了%.如果該單位四月份在保持三月份的再生資源處理量和新產品售價的基礎上,其利潤比二月份的利潤減少了60元,求m的值.
(1) y=10x+30,w=-50x2+900x+2550;(2)5;(3)10.
解析試題分析:(1)首先根據表格求出y與x的函數關系式,然后利用已知條件即可得到P與x的函數關系式;
(2)根據(1)所求可以進而得到利潤與x之間的函數關系式,即可求解;
(3)首先根據已知條件可以分別求出:二月處理量、二月成本、二月利潤,接著利用已知條件即可列出方程100×50(1-m%)(1+0.6m%)-850×(1-20%)=50×100-850-60,解方程即可解決問題.
試題解析::解:(1)將(1,40),(2,50)代入y=kx+b,
得:,解得:
故每月再生資源處理量y(噸)與x月份之間的關系式為:y=10x+30,
w=100y-p
=100(10x+30)-(50x2+100x+450)
=-50x2+900x+2550
(2)由-50x2+900x+2550=5800得:
x2-18x+65=0
∴x1=13,x2=5
∵x≤12,
∴x=5
∴在今年內該單位第5個月獲得利潤達到5800元.
(3)二月份再生資源處理量:40+10=50噸,
二月成本:P=50×22+100×2+450=850元,
100×50(1-m%)(1+0.6m%)-950×(1-20%)=4050,
令m%=t,則300t2+200t-23=0
∴
∵t>0
∴t=0.1
∴m%=0.1,即m=10.
考點:二次函數的應用.
科目:初中數學 來源: 題型:填空題
(2013年四川綿陽4分)二次函數y=ax2+bx+c的圖象如圖所示,給出下列結論:
①2a+b>0;②b>a>c;③若﹣1<m<n<1,則m+n<;④3|a|+|c|<2|b|.
其中正確的結論是 (寫出你認為正確的所有結論序號).
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
“丹棱凍粑”是眉山著名特色小吃,產品暢銷省內外,現有一個產品銷售點在經銷時發(fā)現:如果每箱產品盈利10元,每天可售出50箱;若每箱產品漲價1元,日銷售量將減少2箱.
(1)現該銷售點每天盈利600元,同時又要顧客得到實惠,那么每箱產品應漲價多少元?
(2)若該銷售點單純從經濟角度考慮,每箱產品應漲價多少元才能獲利最高?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
一次函數y=x–3的圖象與軸,軸分別交于點.一個二次函數y=x2+bx+c的圖象經過點.
(1)求點的坐標,并畫出一次函數y=x–3的圖象;
(2)求二次函數的解析式并求其圖像頂點C的坐標.
(3)求的面積。
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜邊BC上的高,垂足為D,BE=1cm.點M從點B出發(fā)沿BC方向以1cm/s的速度運動,點N從點E出發(fā),與點M同時同方向以相同的速度運動,以MN為邊在BC的上方作正方形MNGH.點M到達點D時停止運動,點N到達點C時停止運動.設運動時間為t(s).
(1)當t為何值時,點G剛好落在線段AD上?
(2)設正方形MNGH與Rt△ABC重疊部分的圖形的面積為S,當重疊部分的圖形是正方形時,求出S關于t的函數關系式并寫出自變量t的取值范圍.
(3)設正方形MNGH的邊NG所在直線與線段AC交于點P,連接DP,當t為何值時,△CPD是等腰三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
今年5月1日起實施《青海省保障性住房準入分配退出和運營管理實施細則》規(guī)定:公共租賃住房和廉租住房并軌運行(以下簡稱并軌房),計劃10年內解決低收入人群住房問題.已知第x年(x為正整數)投入使用的并軌房面積為y百萬平方米,且y與x的函數關系式為y=-x+5.由于物價上漲等因素的影響,每年單位面積租金也隨之上調.假設每年的并軌房全部出租完,預計第x年投入使用的并軌房的單位面積租金z與時間x滿足一次函數關系如下表:
時間x(單位:年,x為正整數) | 1 | 2 | 3 | 4 | 5 | … |
單位面積租金z(單位:元/平方米) | 50 | 52 | 54 | 56 | 58 | |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
在平面直角坐標系中, 拋物線+與直線交于A, B兩點,點A在點B的左側.
(1)如圖1,當時,直接寫出A,B兩點的坐標;
(2)在(1)的條件下,點P為拋物線上的一個動點,且在直線AB下方,試求出△ABP面積的最大值及此時點P的坐標;
(3)如圖2,拋物線+ 與軸交于C,D兩點(點C在點D的左側).在直線上是否存在唯一一點Q,使得∠OQC=90°?若存在,請求出此時的值;若不存在,請說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知:矩形ABCD中,M為BC邊上一點, AB=BM=10,MC=14,如圖1,正方形EFGH的頂點E和點B重合,點F、G、H分別在邊AB、AM、BC上.如圖2,P為對角線AC上一動點,正方形EFGH從圖1的位置出發(fā),以每秒1個單位的速度沿BC向點C勻速移動;同時,點P從C點出發(fā),以每秒1個單位的速度沿CA向點A勻速移動.當點F到達線段AC上時,正方形EFGH和點P同時停止運動.設運動時間為t秒,解答下列問題:
(1)在整個運動過程中,當點F落在線段AM上和點G落在線段AC上時,分別求出對應t的值;
(2)在整個運動過程中,設正方形與重疊部分面積為S,請直接寫出S與t之間的函數關系式以及自變量t的取值范圍;
(3)在整個運動過程中,是否存在點P,使是以DG為腰的等腰三角形?若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖①,已知二次函數的解析式是y=ax2+bx(a>0),頂點為A(1,-1).
(1)a= ;
(2)若點P在對稱軸右側的二次函數圖像上運動,連結OP,交對稱軸于點B,點B關于頂點A的對稱點為C,連接PC、OC,求證:∠PCB=∠OCB;
(3)如圖②,將拋物線沿直線y=-x作n次平移(n為正整數,n≤12),頂點分別為A1,A2,…,An,橫坐標依次為1,2,…,n,各拋物線的對稱軸與x軸的交點分別為D1,D2,…,Dn,以線段AnDn為邊向右作正方形AnDnEnFn,是否存在點Fn恰好落在其中的一個拋物線上,若存在,求出所有滿足條件的正方形邊長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com