精英家教網 > 初中數學 > 題目詳情

【題目】鄭州大學(ZhengzhouUniversity),簡稱“鄭大”,是中華人民共和國教育部與河南省人民政府共建的全國重點大學,首批“雙一流”世界一流大學、“211工程”.某學校興趣小組3人來到鄭州大學門口進行測量,如圖,在大樓AC的正前方有一個舞臺,舞臺前的斜坡DE4米,坡角∠DEB41°,小紅在斜坡下的點E處測得樓頂A的仰角為60°,在斜坡上的點D處測得樓頂A的仰角為45°,其中點BC,E在同一直線上求大樓AC的高度.(結果精確到整數.參考數據:≈1.73,sin41°≈0.6,cos41°≈0.75,tan41°≈0.87)

【答案】大樓AC的高度約為13

【解析】

CEx,根據正弦的定義求出BD,根據余弦的定義求出BE,根據正切的定義用x表示出AC,根據等腰直角三角形的性質列方程,解方程得到答案.

解:如圖:設CEx,

Rt△DEB中,sin∠DEB,

∴DBDEsin∠DEB≈4×0.62.4,

cos∠DEB

∴BEDEcos∠DEB≈4×0.753,

Rt△AEC中,tan∠AEC,

∴ACCEtan∠AECx,

∵∠ADF45°,

∴FAFD,

x2.4x+3,

解得,x,

∴ACx≈13

答:大樓AC的高度約為13米.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】閱讀下面材料后,解答問題.分母中含有未知數的不等式叫分式不等式.如:等.那么如何求出它們的解集呢?根據我們學過的有理數除法法則可知,兩數相除,同號得正,異號得負,其字母表達式為:

1)若,,則,若,則;

2)若,,則,若,則.反之,(1)若,則

3)若,則_______________________.根據上述規(guī)律,求不等式,的解集,方法如下:

由上述規(guī)律可知,不等式,轉化為①或②

解不等式組①得,解不等式組②得

∴不等式,的解集是

根據上述材料,解決以下問題:

A、求不等式的解集

B、乘法法則與除法法則類似,請你類比上述材料內容,運用乘法法則,解決以下問題:求不等式的解集.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形 ABCD 中,CE⊥BD,AB=4,BC=3P BD 上一個動點,以 P 為圓心,PB 長半徑作⊙P,⊙P CEBD、BC 交于 FG、H(任意兩點不重合),

1)半徑 BP 的長度范圍為 ;

2)連接 BF 并延長交 CD K,若 tan KFC 3 ,求 BP;

3)連接 GH,將劣弧 HG 沿著 HG 翻折交 BD 于點 M,試探究是否為定值,若是求出該值,若不是,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了踐行金山銀山,不如綠水青山的環(huán)保理念,重外環(huán)保小組的孩子們參與社區(qū)公益活動——收集廢舊電池,活動開展一個月后,經過統(tǒng)計發(fā)現(xiàn),全組成員平均每人收集了顆廢舊電池,其中,收集數量低于顆的同學平均每人收集了顆,收集數量不低于顆的同學平均每人收集了顆,數學王老師發(fā)現(xiàn),若每人再多收集顆,則收集數量低于顆的同學平均每人收集了顆,收集數量不低于顆的同學平均每人收集了顆,并且,該環(huán)保小組的人數介于.則該環(huán)保小組有__________人.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,過二次函數y=﹣x2+4x圖象上的點A3,3)作x軸的垂線交x軸于點B

1)如圖1P為線段OA上方拋物線上的一點,在x軸上取點C1,0),點MNy軸上的兩個動點,點M在點N的上方且MN1.連接AC,當四邊形PACO的面積最大時,求PM+MNNO的最小值.

2)如圖2,點Q3,1)在線段AB上,作射線CQ,將AQC沿直線AB翻折,C點的對應點為C',將AQC'沿射線CQ平移3個單位得A'Q'C,在射線CQ上取一點M,使得以A'M、C為頂點的三角形是等腰三角形,求M點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,,以的各邊作三個正方形,過點于點,連接,延長于點,若中點,且,則的長為( )

A.8B.C.D.12

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,正方形的邊長為6,點分別在正半軸上,點在第一象限.點正半軸上的一動點,且,連結,將線段繞點順時針旋轉90度至,連結,取中點

1)當時,求的坐標.

2)如圖2,連結,以、為鄰邊構造平行四邊形記平行四邊形的面積為

①用含的代數式表示

②當落在的直角邊上時,求的度數.

3)在(2)的條件下,連結,記的面積為,若,則 (直接寫出答案)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線L1:y=﹣x2+bx+c經過點A(1,0)和點B(5,0)已知直線l的解析式為y=kx﹣5.

(1)求拋物線L1的解析式、對稱軸和頂點坐標.

(2)若直線l將線段AB分成1:3兩部分,求k的值;

(3)當k=2時,直線與拋物線交于M、N兩點,點P是拋物線位于直線上方的一點,當PMN面積最大時,求P點坐標,并求面積的最大值.

(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L2

直接寫出y隨x的增大而增大時x的取值范圍;

直接寫出直線l與圖象L2有四個交點時k的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線經過三點,且

1)求的值;

2)在拋物線上求一點使得四邊形是以為對角線的菱形;

3)在拋物線上是否存在一點,使得四邊形是以為對角線的菱形?若存在,求出點的坐標,并判斷這個菱形是否為正方形?若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案