【題目】如圖,矩形ABCD中,對角線AC,BD相交于O點,點P是線段AD上一動點(不與點D重合),PO的延長線交BC于Q點.
(1)求證:四邊形PBQD為平行四邊形.
(2)若AB=3cm,AD=4cm,P從點A出發(fā).以1cm/s的速度向點D勻速運動.設點P的運動時間為ts,問:四邊形PBQD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.
【答案】(1)證明見解析;(2)點P的運動時間為s時,四邊形PBQD能夠成為菱形.
【解析】試題分析:(1)證明△POD≌△QOB,得OP=OQ.,OD=OB,證明四邊形PBQD是平行四邊形.
(2)假設可以構成菱形,則PB=PD,在Rt△ABP中,AP2+AB2=PB2則可解得t=.
試題解析:
(1)證明:∵四邊形ABCD是矩形,∴AD∥BC,OD=OB.
∴∠PDO=∠QBO.
又∠POD=∠QOB,∴△POD≌△QOB.
∴OP=OQ.
∴四邊形PBQD為平行四邊形.
(2)解:能.點P從點A出發(fā)運動ts時,AP=tcm,PD=(4-t)cm.
當四邊形PBQD是菱形時,PB=PD=(4-t)cm.
∵四邊形ABCD是矩形,∴∠BAP=90°.
∴在Rt△ABP中,AP2+AB2=PB2,即t2+32=(4-t)2.解得t=.
∴點P的運動時間為s時,四邊形PBQD能夠成為菱形.
科目:初中數學 來源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,點C在x軸上,反比例函數y=(x>0)的圖象經過點A(5,12),且與邊BC交于點D.若AB=BD,則點D的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知Rt△AOB的兩直角邊OA、OB分別在x軸、y軸的正半軸上(OA<OB),且OA、OB的長分別是一元二次方程x2﹣14x+48=0的兩個根.線段AB的垂直平分線CD交AB于點C,交x軸于點D,點P是直線CD上一個動點,點Q是直線AB上一個動點.
(1)求A、B兩點的坐標;
(2)求直線CD的解析式;
(3)在坐標平面內是否存在點M,使以點C、P、Q、M為頂點的四邊形是正方形,且該正方形的邊長為AB長?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:
一般地,n個相同的因數a相乘記為an,記為an.如2×2×2=23=8,此時,3叫做以2為底8的對數,記為log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),則n叫做以a為底b的對數,記為logab(即logab=n).如34=81,則4叫做以3為底81的對數,記為log381(即log381=4).
(1)計算以下各對數的值:
log24= ,log216= ,log264= .
(2)觀察(1)中三數4、16、64之間滿足怎樣的關系式,log24、log216、log264之間又滿足怎樣的關系式 。
(3)由(2)的結果,你能歸納出一個一般性的結論嗎?
logaM+logaN= ;(a>0且a≠1,M>0,N>0)
(4)根據冪的運算法則:anam=an+m以及對數的含義證明上述結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,以Rt△ABC的斜邊BC為一邊在△ABC的同側作正方形BCEF,設正方形的中心為O,連接AO,如果AB=4,AO=6,那么AC=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數y=kx+7的圖像經過點A(2,3).
(1)求k的值;
(2)判斷點B(-1,8),C(3,1)是否在這個函數的圖像上,并說明理由;
(3)當-3<x<-1時,求y的取值范圍.
【答案】(1)k=-2(2)點B不在,點C在,(3)9<y<13
【解析】
試題分析:(1)把點A(2,3)代入y=kx+7即可求出k的值;(2)點B(-1,8),C(3,1)的橫坐標代入函數解析式驗證即可;(3)根據x的取值范圍,即可求出y的取值范圍.
試題解析:(1)把點A(2,3)代入y=kx+7得:k=-2
(2)當x=-1時,y=-2×(-1)+7=9
∵9≠8∴點B不在拋物線上.
當x=3時,y=-2×3+7=1
∴點C在拋物線上
(3)當x=-3時,y=13,當x=-,1時,y=9,所以9<y<13
考點:一次函數.
【題型】解答題
【結束】
24
【題目】順豐快遞公司派甲、乙兩車從A地將一批物品勻速運往B地,甲出發(fā)0.5h后乙開始出發(fā),結果比甲早1(h)到達B地,如圖,線段OP、MN分別表示甲、乙兩車離A地的距離S(km)與時間t(h)的關系,a表示A、B兩地之間的距離.請結合圖中的信息解決如下問題:
(1)分別計算甲、乙兩車的速度及a的值;
(2)乙車到達B地后以原速立即返回,請問甲車到達B地后以多大的速度立即勻速返回,才能與乙車同時回到A地?并在圖中畫出甲、乙兩車在返回過程中離A地的距離S(km)與時間t(h)的函數圖象.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E,F分別是AB,CD上的點,點G是BC的延長線上一點,且∠B=∠DCG=∠D,則下列判斷中,錯誤的是( )
A. ∠AEF=∠EFC B. ∠A=∠BCF C. ∠AEF=∠EBC D. ∠BEF+∠EFC=180°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF=DC,連接EF并延長交BC的延長線于點G。
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com