【題目】如圖,在梯形中,,交邊于點.
(1)當點與恰好重合時(如圖1),求的長;
(2)問:是否可能使、與都相似?若能,請求出此時的長;若不能,請說明理由(如圖2).
【答案】(1)2;(2)AD =2.
【解析】
(1)由∠DCA=∠CAB,∠ADC=∠ACB,證得△ACD∽△ABC,利用相似三角形的對應邊成比例,即可求得AD的長;
(2)分別從使△ABE、△CDE與△BCE都相似分析,利用相似三角形的性質,即可求得AD的長.
解:(1)當點E與A重合時,∵CD∥AB,
∴∠DCA=∠CAB,且∠ADC=∠ACB=90°,
∴△ACD∽△ABC,
∴,
∴AC=2,
∴AD=.
(2)若能使△ABE、△CDE與△BCE都相似,
∴∠EBC=∠A=∠D=90°,∠DEC=∠BEC=∠AEB,
∵∠DEC+∠BEC+∠AEB=180,
∴∠DEC=∠BEC=∠AEB=60°.
在Rt△DEC中,tan∠DEC=,
∴DE=.
在Rt△ABE中,tan∠AEB=,
∴EA=,
∴AD=DE+AE=2.
科目:初中數(shù)學 來源: 題型:
【題目】泉州市旅游資源豐富,①清源山、②開元寺、③崇武古城三個景區(qū)是人們節(jié)假日玩的熱點景區(qū),張老師對八(1)班學生“五·一”小長假隨父母到這三個景區(qū)游玩的計劃做了全面調查,調查分四個類別:A、游三個景區(qū);B,游兩個景區(qū);C,游一個景區(qū):D,不到這三個景區(qū)游玩現(xiàn)根據(jù)調查結果繪制了不完整的條形統(tǒng)計圖和廟形統(tǒng)計圖,請結合圖中信息解答下列問題:
(1)八(1)班共有學生 人在扇形統(tǒng)計圖中,表示“B類別的扇形的圓心角的度數(shù)為 ;
(2)請將條形統(tǒng)計圖補充完整;
(3)若小華、小剛兩名同學,各自從三個最區(qū)中隨機選一個作為5月1日游玩的景區(qū),請用樹狀圖或列表法求他們選中同個景區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】實踐與探究
在平面直角坐標系中,四邊形AOBC是矩形,點(0,0),點A(5,0),點B(0,3).以點A為中心,順時針旋轉矩形AOBC,得到矩形ADEF,點O,B,C的對應點分別為D,E,F.
(1)如圖(1),當點D落在BC邊上時,求點D的坐標;
(2)如圖(2),當點D落在線段BE上時,AD與BC交于點H.
①求證:ΔADB≌ΔAOB;
②求點H的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品的進價為每件元,現(xiàn)在的售價為每件元,每星期可賣出件.市場調查反映:如果每件的售價每漲元(售價每件不能高于元),那么每星期將少賣出件.設每件漲價元(為非負整數(shù)),每星期的銷量為件.
①求與的函數(shù)關系式及自變量的取值范圍;
②如何定價才能使每星期的利潤最大?每星期的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把某矩形紙片ABCD沿EF,GH折疊(點E,H在AD邊上,點F,G在BC邊上),使點B和點C落在AD邊上同一點P處,A點的對稱點為A′點,D點的對稱點為D′點,若∠FPG=90°,△A′EP的面積為5,△D′PH的面積為20,則矩形ABCD的面積等于_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與軸、軸分別交于點、,拋物線經(jīng)過、兩點,且對稱軸為直線.
(1)求拋物線的表達式;
(2)如果點是這拋物線上位于軸下方的一點,且△的面積是.求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義符號min{a,b}的含義為:當a≥b時,min{a,b}=b;當a<b時,min{a,b}=a,如:min{1,-2)=-2,min{-3,-2)=-3,則方程min{x,-x}=x2-1的解是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ACB中,∠C=90°,點D在AC上,∠CBD=∠A,過A、D兩點的圓的圓心O在AB上.
(1)判斷BD所在直線與⊙O的位置關系,并證明你的結論;
(2)若AE=4,∠A=30°,求圖中由BD、BE、弧DE圍成陰影部分面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com