【題目】已知:a2﹣4ab+5b2﹣2b+1=0,則以a,b為根的一元二次方程為 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,對角線相交于點O;E、F、G、H分別是AD、BD、 BC、AC的中點.
(1)說明四邊形EFGH是平行四邊形;
(2)當(dāng)四邊形ABCD滿足一個什么條件時,四邊形EFGH是菱形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)為了綠化環(huán)境,計劃分兩次購進(jìn)、兩種花草,第一次分別購進(jìn)、 兩種花草棵和棵,共花費元;第二次分別購進(jìn)、兩種花草棵和棵.兩次共花費元(兩次購進(jìn)的、兩種花草價格均分別相同).
()、兩種花草每棵的價格分別是多少元?
()若購買、兩種花草共棵,且種花草的數(shù)量少于種花草的數(shù)量的倍,請你給出一種費用最省的方案,并求出該方案所需費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的分式方程 + = .
(1)若方程的增根為x=2,求m的值;
(2)若方程有增根,求m的值;
(3)若方程無解,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A(0,2),B(﹣2,0),點D是x軸上一個動點,以AD為一直角邊在一側(cè)作等腰直角三角形ADE,∠DAE=90°,若△ABD為等腰三角形時點E的坐標(biāo)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點.
觀察圖象可知:
①當(dāng)x=﹣3或1時,y1=y2;
②當(dāng)﹣3<x<0或x>1時,y1>y2,即通過觀察函數(shù)的圖象,可以得到不等式ax+b>的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學(xué)根據(jù)學(xué)習(xí)以上知識的經(jīng)驗,對求不等式x3+4x2﹣x﹣4>0的解集進(jìn)行了探究.
下面是他的探究過程,請將(2)、(3)、(4)補充完整:
(1)將不等式按條件進(jìn)行轉(zhuǎn)化:
當(dāng)x=0時,原不等式不成立;
當(dāng)x>0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1>;
當(dāng)x<0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1<;
(2)構(gòu)造函數(shù),畫出圖象
設(shè)y3=x2+4x﹣1,y4=,在同一坐標(biāo)系中分別畫出這兩個函數(shù)的圖象.
雙曲線y4=如圖2所示,請在此坐標(biāo)系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(3)確定兩個函數(shù)圖象公共點的橫坐標(biāo)
觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為 ;
(4)借助圖象,寫出解集
結(jié)合(1)的討論結(jié)果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列兩個三角形的對應(yīng)元素中,不能判斷兩個三角形全等的是( )
A. SSA B. AAS C. SAS D. ASA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣bx+1(﹣1≤b≤1),當(dāng)b從﹣1逐漸變化到1的過程中,它所對應(yīng)的拋物線位置也隨之變動.下列關(guān)于拋物線的移動方向的描述中,正確的是( 。
A. 先往左上方移動,再往左下方移動 B. 先往左下方移動,再往左上方移動
C. 先往右上方移動,再往右下方移動 D. 先往右下方移動,再往右上方移動
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com