已知如圖所示,拋物線交x軸于A(x1,0),B(x2,0),交y軸于點(diǎn)C,且x1<0<x2,(AO+OB)2=12CO+1.

(1)求拋物線的關(guān)系式;

(2)在x軸下方的拋物線上,是否存在點(diǎn)P,使∠APB為銳角?若存在,求出P點(diǎn)的橫坐標(biāo)的范圍;若不存在,請說明理由.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•巴中)已知如圖所示,在平面直角坐標(biāo)系中,四邊形ABC0為梯形,BC∥A0,四個(gè)頂點(diǎn)坐標(biāo)分別為A(4,0),B(1,4),C(0,4),O(0,O).一動點(diǎn)P從O出發(fā)以每秒1個(gè)單位長度的速度沿OA的方向向A運(yùn)動;同時(shí),動點(diǎn)Q從A出發(fā),以每秒2個(gè)單位長度的速度沿A→B→C的方向向C運(yùn)動.兩個(gè)動點(diǎn)若其中一個(gè)到達(dá)終點(diǎn),另一個(gè)也隨之停止.設(shè)其運(yùn)動時(shí)間為t秒.
(1)求過A,B,C三點(diǎn)的拋物線的解析式;
(2)當(dāng)t為何值時(shí),PB與AQ互相平分;
(3)連接PQ,設(shè)△PAQ的面積為S,探索S與t的函數(shù)關(guān)系式.求t為何值時(shí),S有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖所示,二次函數(shù)y=3x2-3的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C.直線x=1+m(m>O)與x軸交于點(diǎn)D.
(1)求A、B、C三點(diǎn)的坐標(biāo).
(2)在直線x=l+m(m>0)上有一點(diǎn)P(點(diǎn)P在第一象限),使得以P、D、B為頂點(diǎn)的三角形與以B、C、O為頂點(diǎn)的三角形相似,求P點(diǎn)的坐標(biāo)(用含m的代數(shù)式表示).
(3)在(2)成立的條件下,試問:拋物線y=3x2-3上是否存在一點(diǎn)Q,使得四邊形ABPQ為平行四邊形?如果存在這樣的點(diǎn)Q,請求出m的值;如果不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知如圖所示,在平面直角坐標(biāo)系中,四邊形ABC0為梯形,BC∥A0,四個(gè)頂點(diǎn)坐標(biāo)分別為A(4,0),B(1,4),C(0,4),O(0,O).一動點(diǎn)P從O出發(fā)以每秒1個(gè)單位長度的速度沿OA的方向向A運(yùn)動;同時(shí),動點(diǎn)Q從A出發(fā),以每秒2個(gè)單位長度的速度沿A→B→C的方向向C運(yùn)動.兩個(gè)動點(diǎn)若其中一個(gè)到達(dá)終點(diǎn),另一個(gè)也隨之停止.設(shè)其運(yùn)動時(shí)間為t秒.
(1)求過A,B,C三點(diǎn)的拋物線的解析式;
(2)當(dāng)t為何值時(shí),PB與AQ互相平分;
(3)連接PQ,設(shè)△PAQ的面積為S,探索S與t的函數(shù)關(guān)系式.求t為何值時(shí),S有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:四川省中考真題 題型:解答題

已知如圖所示,在平面直角坐標(biāo)系中,四邊形ABC0為梯形,BC∥AO,四個(gè)頂點(diǎn)坐標(biāo)分別為A(4,0),B(1,4),C(0,4),O(0,0)。一動點(diǎn)P從O出發(fā)以每秒1個(gè)單位長度的速度沿OA的方向向A運(yùn)動;同時(shí),動點(diǎn)Q從A出發(fā),以每秒2個(gè)單位長度的速度沿A→B→C的方向向C運(yùn)動。兩個(gè)動點(diǎn)若其中一個(gè)到達(dá)終點(diǎn),另一個(gè)也隨之停止.設(shè)其運(yùn)動時(shí)間為t秒。
(1)求過A,B,C三點(diǎn)的拋物線的解析式;
(2)當(dāng)t為何值時(shí),PB與AQ互相平分;
(3)連接PQ,設(shè)△PAQ的面積為S,探索S與t的函數(shù)關(guān)系式,求t為何值時(shí),S有最大值?最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案