【題目】在平面直角坐標(biāo)系中,直線l1:與坐標(biāo)軸交于A,B兩點(diǎn),直線l2:(≠0)與坐標(biāo)軸交于點(diǎn)C,D.
(1)求點(diǎn)A,B的坐標(biāo);
(2)如圖,當(dāng)=2時(shí),直線l1,l2與相交于點(diǎn)E,求兩條直線與軸圍成的△BDE的面積;
(3)若直線l1,l2與軸不能?chē)扇切危c(diǎn)P(a,b)在直線l2:(k≠0)上,且點(diǎn)P在第一象限.
①求的值;
②若,,求的取值范圍.
【答案】(1)A(0,6)B(3,0)(2)8(3)①;②
【解析】
(1)根據(jù),令x=0,得到y=6;令y=0,得到x=3,即可解答;
(2)當(dāng)=2時(shí),求出直線l2:與x軸交點(diǎn)D的坐標(biāo),從而求出DB的長(zhǎng),再把
兩直線的解析式組成方程組求出點(diǎn)E的坐標(biāo),根據(jù)三角形的面積公式求出△BDE的面積;
(3)①若直線l1,l2與軸不能?chē)扇切,則直線l2與l1平行或直線l2經(jīng)過(guò)點(diǎn)B,從而求出k的值;②根據(jù)k的值分別求出直線l2解析式,再根據(jù)點(diǎn)P (a,b)在直線l2 上得到a與b的關(guān)系式,從而確定的取值范圍.
(1)∵,
∴令x=0,得到y=6;令y=0,得到x=3,
則A(0,6),B(3,0);
(2)當(dāng)=2時(shí),直線l2:
令y=0,得到x=-1,
∴D(-1,0)
∴BD=4
由
解得:
∴點(diǎn)E坐標(biāo)為(1,4)
∴4=8
(3)①若直線l1,l2與軸不能?chē)扇切,則直線l2與l1平行或直線l2經(jīng)過(guò)點(diǎn)B,
當(dāng)直線l2與l1平行,k=-2,當(dāng)直線l2經(jīng)過(guò)點(diǎn)B時(shí),=0,則=-
∴k=-2或-
②當(dāng)k=-2時(shí),直線l2的解析式為:,
∵點(diǎn)P(a,b)在直線l2上,∴b=-2a+2
∴=a-2a+2=2-a
∵點(diǎn)P(a,b)在第一象限
∴
解得:0
∴12-a,即1
當(dāng)k=-時(shí),直線l2的解析式為:,
∵點(diǎn)P(a,b)在直線l2上,∴b=a+2
∴=a-a+2=a+2
∵點(diǎn)P(a,b)在第一象限
∴
解得:0
∴2a+2,即2
綜上所述:的取值范圍為:1或2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正比例函數(shù)y= x的圖象與反比例函數(shù)y= (k≠0)在第一象限的圖象交于點(diǎn) ,過(guò)點(diǎn)A作X軸的垂線,垂足為M,已知△AOM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如果點(diǎn) 為反比例函數(shù)在第一象限圖象上的點(diǎn)(點(diǎn) 與點(diǎn) 不重合),且點(diǎn) 的橫坐標(biāo)為1,在 軸上求一點(diǎn) ,使 最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的袋中裝有5個(gè)黃球,13個(gè)黑球和22個(gè)紅球,這些球除顏色外其他都相同.
(1)求從袋中摸出一個(gè)球是黃球的概率.
(2)現(xiàn)在從袋中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,攪拌均勻后,使從袋中摸出一個(gè)球是黃球的概率不小于 ,問(wèn):至少取出多少個(gè)黑球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC和△A1B1C1關(guān)于x軸成軸對(duì)稱(chēng),畫(huà)出△A1B1C1
(2)點(diǎn)C1的坐標(biāo)為_(kāi)________,△ABC的面積為_(kāi)_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為線段AD上一點(diǎn),CO⊥AD于點(diǎn)O,OA=OB,OC=OD,點(diǎn)M、N分別是AC、BD的中點(diǎn),連接OM、ON、MN.
(1)求證:AC=BD;
(2)試判斷△MON的形狀,并說(shuō)明理由;
(3)若AC=2,在圖2中,點(diǎn)M在DB的延長(zhǎng)線上,求△AMD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB,于點(diǎn)E
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是邊AB上一點(diǎn),E是邊AC的中點(diǎn),作CF∥AB交DE的延長(zhǎng)線于點(diǎn)F.
(1)證明:△ADE≌△CFE;
(2)若∠B=∠ACB,CE=5,CF=7,求DB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上,王老師布置如下任務(wù):如圖,△ABC中,BC>AB>AC,在BC邊上取一點(diǎn)P,使∠APC=2∠ABC.
小路的作法如下:
① 作AB邊的垂直平分線,交BC于點(diǎn)P,交AB于點(diǎn)Q;
② 連結(jié)AP.
請(qǐng)你根據(jù)小路同學(xué)的作圖方法,利用直尺和圓規(guī)完成作圖(保留作圖痕跡);并完成以下推理,注明其中蘊(yùn)含的數(shù)學(xué)依據(jù):
∵ PQ是AB的垂直平分線
∴ AP= , (依據(jù): );
∴ ∠ABC= , (依據(jù): ).
∴ ∠APC=2∠ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書(shū)店老板去圖書(shū)批發(fā)市場(chǎng)購(gòu)買(mǎi)某種圖書(shū).第一次用1200元購(gòu)書(shū)若干本,并按該書(shū)定價(jià)7元出售,很快售完.由于該書(shū)暢銷(xiāo),第二次購(gòu)書(shū)時(shí),每本書(shū)的批發(fā)價(jià)已比第一次提高了20%,他用1500元所購(gòu)該書(shū)數(shù)量比第一次多10本.當(dāng)按定價(jià)7元售出150本時(shí),出現(xiàn)滯銷(xiāo),便以定價(jià)的5折售完剩余的書(shū).
(1)每本書(shū)第一次的批發(fā)價(jià)是多少錢(qián)?
(2)試問(wèn)該老板這兩次售書(shū)總體上是賠錢(qián)了,還是賺錢(qián)了(不考慮其它因素)?若賠錢(qián),賠多少?若賺錢(qián),賺多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com