如圖所示,已知四邊形OABC是菱形,∠O=60°,點(diǎn)M是邊OA的中點(diǎn),以點(diǎn)O為圓心,r為半徑作⊙O分別交OA,OC于點(diǎn)D,E,連接BM.若BM=的長(zhǎng)是.求證:直線BC與⊙O相切.
證明見解析

試題分析:過(guò)點(diǎn)O作OF⊥BC于F,過(guò)點(diǎn)B作BG⊥OA于G,則四邊形BGOF為矩形,OF=BG。設(shè)菱形OABC的邊長(zhǎng)為2a,先在Rt△BMG中,利用勾股定理得出BG2+GM2=BM2,即(a)2+(2a)2=(2,求得a=1,得到OF=,再根據(jù)弧長(zhǎng)公式求出r=,則圓心O到直線BC的距離等于圓的半徑r,從而判定直線BC與⊙O相切!
證明:如圖,過(guò)點(diǎn)O作OF⊥BC于F,過(guò)點(diǎn)B作BG⊥OA于G,則四邊形BGOF為矩形,OF=BG.

設(shè)菱形OABC的邊長(zhǎng)為2a,則AM=OA=a.
∵菱形OABC中,AB∥OC,∠COA =60°,
∴∠BAG=∠COA=60°,∠ABG=90°﹣60°=30°。
∴AG=AB=a,BG=AG=a。
在Rt△BMG中,
∵∠BGM=90°,BG=aGM=a+a=2a,BM=,
∴BG2+GM2=BM2,即(a)2+(2a)2=(2,解得a=1!郞F=BG=
又∵的長(zhǎng)=,∴r=。
∴OF=r=,即圓心O到直線BC的距離等于圓的半徑r。
∴直線BC與⊙O相切。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線分別與x、y軸交于點(diǎn)B、C,點(diǎn)A(﹣2,0),P是直線BC上的動(dòng)點(diǎn).

(1)求∠ABC的大;
(2)求點(diǎn)P的坐標(biāo),使∠APO=30°;
(3)在坐標(biāo)平面內(nèi),平移直線BC,試探索:當(dāng)BC在不同位置時(shí),使∠APO=30°的點(diǎn)P的個(gè)數(shù)是否保持不變?若不變,指出點(diǎn)P的個(gè)數(shù)有幾個(gè)?若改變,指出點(diǎn)P的個(gè)數(shù)情況,并簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2013年四川自貢4分)如圖,點(diǎn)O是正六邊形的對(duì)稱中心,如果用一副三角板的角,借助點(diǎn)O(使該角的頂點(diǎn)落在點(diǎn)O處),把這個(gè)正六邊形的面積n等分,那么n的所有可能取值的個(gè)數(shù)是【   】
A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直徑,⊙O交BC于點(diǎn)D,DE⊥AC于點(diǎn)E,BE交⊙O于點(diǎn)F,連接AF,AF的延長(zhǎng)線交DE于點(diǎn)P.

(1)求證:DE是⊙O的切線;
(2)求tan∠ABE的值;
(3)若OA=2,求線段AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在圓中,30°的圓周角所對(duì)的弦的長(zhǎng)度為,則這個(gè)圓的半徑是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB是⊙O的弦,OC⊥AB于點(diǎn)C,連接OA、OB.點(diǎn)P是半徑OB上任意一點(diǎn),連接AP.若OA=5cm,OC=3cm,則AP的長(zhǎng)度可能是   cm(寫出一個(gè)符合條件的數(shù)值即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB是半圓O的直徑,點(diǎn)P在AB的延長(zhǎng)線上,PC切半圓O于點(diǎn)C,連接AC.若∠CPA=20°,則∠A=   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在扇形OAB中,∠AOB=110°,半徑OA=18,將扇形OAB沿過(guò)點(diǎn)B的直線折疊,點(diǎn)O恰好落在上的點(diǎn)D處,折痕交OA于點(diǎn)C,則的長(zhǎng)為       . 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若⊙O1和⊙O2的圓心距為4,兩圓半徑分別為r1、r2,且r1、r2是方程組的解,求r1、r2的值,并判斷兩圓的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案