【題目】如圖,在△ABC中,點(diǎn)D、E分別為BC、AD的中點(diǎn),EF=2FC,若△ABC的面積為12 cm2,則△BEF的面積為( )
A.B.C.D.
【答案】C
【解析】
由點(diǎn)D是BC的中點(diǎn),可得△ABD的面積=△ACD的面積=△ABC,由E是AD的中點(diǎn),得出△ABE的面積=△D BE的面積=△ABC的面積,進(jìn)而得出△BCE的面積=△ABC的面積,再利用EF=2FC,求出△BEF的面積.
點(diǎn)D是BC的中點(diǎn),△ABD的面積=△ACD的面積=△ABC的面積= 6,
E是AD的中點(diǎn),△ABE的面積=△DBE的面積=△ABC的面積= 3,
△ACE的面積=△DCE的面積=△ABC的面積= 3,
△BCE的面積=△ABC的面積= 6,
EF= 2FC,△BEF的面積=6=4.
故選C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,E,F分別是AD,CD上兩點(diǎn),BE交AF于點(diǎn)G,且DE=CF.
(1)寫(xiě)出BE與AF之間的關(guān)系,并證明你的結(jié)論;
(2)如圖2,若AB=2,點(diǎn)E為AD的中點(diǎn),連接GD,試證明GD是∠EGF的角平分線,并求出GD的長(zhǎng);
(3)如圖3,在(2)的條件下,作FQ∥DG交AB于點(diǎn)Q,請(qǐng)直接寫(xiě)出FQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A﹙-2,-5﹚、C﹙5,n﹚,交y軸于點(diǎn)B,交x軸于點(diǎn)D.
(1)求反比例函數(shù)y=和一次函數(shù)y=kx+b的表達(dá)式;
(2)連接OA、OC,求△AOC的面積;
(3)寫(xiě)出使一次函數(shù)的值大于反比例函數(shù)的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BC=10,BC邊上的高為3.將點(diǎn)A繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)E,繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)D.沿BC翻折得到點(diǎn)F,從而得到一個(gè)凸五邊形BFCDE,則五邊形BFCDE的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】裝飾公司為小明家設(shè)計(jì)電視背景墻時(shí)需要A、B型板材若干塊,A型板材規(guī)格是ab,B型板材規(guī)格是bb.現(xiàn)只能購(gòu)得規(guī)格是150b的標(biāo)準(zhǔn)板材.(單位:cm)
(1)若設(shè)a60cm,b30cm.一張標(biāo)準(zhǔn)板材盡可能多的裁出A型、B型板材,共有下表三種裁法,下圖是裁法一的裁剪示意圖.
裁法一 | 裁法二 | 裁法三 | |
A型板材塊數(shù) | 1 | 2 | 0 |
B型板材塊數(shù) | 3 | m | n |
則上表中, m=___________, n=__________;
(2)為了裝修的需要,小明家又購(gòu)買(mǎi)了若干C型板材,其規(guī)格是aa,并做成如下圖的背景墻.請(qǐng)寫(xiě)出下圖中所表示的等式:__________;
(3)若給定一個(gè)二次三項(xiàng)式2a25ab3b2,試用拼圖的方式將其因式分解.(請(qǐng)仿照(2)在幾何圖形中標(biāo)上有關(guān)數(shù)量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10.若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB.
(1)求點(diǎn)P與點(diǎn)P′之間的距離;
(2)求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下列證明
如圖,點(diǎn)D,E,F分別在AB,BC,AC上,且DE//AC,EF//AB
求證:∠A+∠B+∠C=180°
證明:∵DE//AC,
∴∠1=________,∠4=________( )
又∵EF//AB,
∴∠3=________( )
∠2=________( )
∴∠2=∠A( )
又∵∠1+∠2+∠3=180°(平角定義)
∴∠A+∠B+∠C=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情期間,學(xué)校為了學(xué)生在班級(jí)將生活垃圾和廢棄口罩分類(lèi)丟棄,準(zhǔn)備購(gòu)買(mǎi)A,B兩種型號(hào)的垃圾箱,通過(guò)市場(chǎng)調(diào)研得知:購(gòu)買(mǎi)3個(gè)A型垃圾箱和2個(gè)B型垃圾箱共需270元,購(gòu)買(mǎi)2個(gè)A型垃圾箱比購(gòu)買(mǎi)3個(gè)B型垃圾箱少用80元.求每個(gè)A型垃圾箱和B型垃圾箱各多少元?學(xué)校購(gòu)買(mǎi)A型垃圾桶8個(gè),B型垃圾桶16個(gè),共花費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2 , …,按圖所示的方式放置.點(diǎn)A1、A2、A3 , …和點(diǎn)B1、B2、B3 , …分別在直線y=kx+b和x軸上.已知C1(1,﹣1),C2( , ),則點(diǎn)A3的坐標(biāo)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com