【題目】如圖,將一個(gè)半徑為,圓心角為的扇形,如圖放置在直線(xiàn)上(與直線(xiàn)重合),然后將這個(gè)扇形在直線(xiàn)上無(wú)摩擦滾動(dòng)至的位置,在這個(gè)過(guò)程中,點(diǎn)運(yùn)動(dòng)到點(diǎn)的路徑長(zhǎng)度為( )
A. 4π B. 3π+3 C. 5π D. 5π-3
【答案】A
【解析】
仔細(xì)觀察頂點(diǎn)O經(jīng)過(guò)的路線(xiàn)可得,頂點(diǎn)O經(jīng)過(guò)的路線(xiàn)可以分為三段,分別求出三段的長(zhǎng),再求出其和即可.
頂點(diǎn)O經(jīng)過(guò)的路線(xiàn)可以分為三段,當(dāng)弧AB切直線(xiàn)l于點(diǎn)A時(shí),有OA⊥直線(xiàn)l,此時(shí)O點(diǎn)繞不動(dòng)點(diǎn)A轉(zhuǎn)過(guò)了90°;
第二段:OA⊥直線(xiàn)l到OB⊥直線(xiàn)l,O點(diǎn)繞動(dòng)點(diǎn)轉(zhuǎn)動(dòng),而這一過(guò)程中弧AB始終是切于直線(xiàn)l的,所以O(shè)與轉(zhuǎn)動(dòng)點(diǎn)P的連線(xiàn)始終⊥直線(xiàn)l,所以O(shè)點(diǎn)在水平運(yùn)動(dòng),此時(shí)O點(diǎn)經(jīng)過(guò)的路線(xiàn)長(zhǎng)=BA′=AB的弧長(zhǎng)
第三段:OB⊥直線(xiàn)l到O點(diǎn)落在直線(xiàn)l上,O點(diǎn)繞不動(dòng)點(diǎn)B轉(zhuǎn)過(guò)了90°.
所以,O點(diǎn)經(jīng)過(guò)的路線(xiàn)總長(zhǎng)S=π+π+π=4π.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ABC=90°,E為BC邊上一點(diǎn)(不與B、C重合),D為AB延長(zhǎng)線(xiàn)上一點(diǎn)且BD=BE.點(diǎn)F、G分別為AE、CD的中點(diǎn).
(1)求證:AE=CD.
(2)求證:△BFG為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在Rt△ABC中,∠ACB=90°,AB=AC,點(diǎn)D在直線(xiàn)AB上,連接CD,在CD的右側(cè)作CE⊥CD,CD=CE,
(1)如圖1,①點(diǎn)D在AB邊上,直接寫(xiě)出線(xiàn)段BE和線(xiàn)段AD的關(guān)系;
(2)如圖2,點(diǎn)D在B右側(cè),BD=1,BE=5,求CE的長(zhǎng).
(3)拓展延伸
如圖3,∠DCE=∠DBE=90,CD=CE,BC=,BE=1,請(qǐng)直接寫(xiě)出線(xiàn)段EC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某段河流的兩岸是平行的,數(shù)學(xué)興趣小組在老師帶領(lǐng)下不用涉水過(guò)河就測(cè)得的寬度,他們是這樣做的:①在河流的一條岸邊B點(diǎn),選對(duì)岸正對(duì)的一棵樹(shù)A;②沿河岸直走20m有一棵樹(shù)C,繼續(xù)前行20m到達(dá)D處;③從D處沿河岸垂直的方向行走,當(dāng)?shù)竭_(dá)A樹(shù)正好被C樹(shù)遮擋住的E處停止行走;④測(cè)得DE的長(zhǎng)為5米.
(1)河的寬度是 米.
(2)請(qǐng)你說(shuō)明他們做法的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以點(diǎn)P(-1,0)為圓心的圓,交x軸于B、C兩點(diǎn)(B在C的左側(cè)),交y軸于A、D兩點(diǎn)(A在D的下方),AD=,將△ABC繞點(diǎn)P旋轉(zhuǎn)180°,得到△MCB.
(1)求B、C兩點(diǎn)的坐標(biāo);
(2)請(qǐng)?jiān)趫D中畫(huà)出線(xiàn)段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點(diǎn)M的坐標(biāo);
(3)動(dòng)直線(xiàn)l從與BM重合的位置開(kāi)始繞點(diǎn)B順時(shí)針旋轉(zhuǎn),到與BC重合時(shí)停止,設(shè)直線(xiàn)l與CM交點(diǎn)為E,點(diǎn)Q為BE的中點(diǎn),過(guò)點(diǎn)E作EG⊥BC于G,連接MQ、QG.請(qǐng)問(wèn)在旋轉(zhuǎn)過(guò)程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,是直徑,半徑,點(diǎn)在上,且點(diǎn)與點(diǎn)在直徑的兩側(cè),連結(jié),.若,則的度數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中,,厘米,厘米,點(diǎn)為的中點(diǎn).如果點(diǎn)在線(xiàn)段上以每秒2厘米的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線(xiàn)段上以每秒厘米的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為(秒).
(1)用含的代數(shù)式表示的長(zhǎng)度;
(2)若點(diǎn)、的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,與是否全等,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)、的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)的運(yùn)動(dòng)速度為多少時(shí),能夠使與全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),Rt△ABC中,∠ACB=-90°,CD⊥AB,垂足為D.AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F
(1)求證:CE=CF.
(2)將圖(1)中的△ADE沿AB向右平移到△A’D’E’的位置,使點(diǎn)E’落在BC邊上,其它條件不變,如圖(2)所示.試猜想:BE'與CF有怎樣的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有、、三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購(gòu)物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在( )
A.在∠A、∠B兩內(nèi)角平分線(xiàn)的交點(diǎn)處
B.在AC、BC兩邊垂直平分線(xiàn)的交點(diǎn)處
C.在AC、BC兩邊高線(xiàn)的交點(diǎn)處
D.在AC、BC兩邊中線(xiàn)的交點(diǎn)處
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com