【題目】如圖,已知、,,為點關于的對稱點,反比例函數(shù)的圖像經過點.
()證明四邊形為菱形.
()求此反比例函數(shù)的解析式.
()已知點在的圖像上,點在軸上,且點、、、組成四邊形是平行四邊形,求點的坐標.
【答案】()證明見解析()()點的坐標為,,
【解析】
試題()先計算出,,再根據(jù)軸對稱的性質得,,于是可根據(jù)菱形的判定方法得到四邊形為菱形;
()由菱形的性質得,則,然后把點坐標代入關系式求出的值即可得到反比例函數(shù)解析式;
()討論:當為對角線,利用平行四邊形的性質,可把點向右平移個單位可得點,則點向右平移個單位可得點,則利用反比例函數(shù)解析式可確定坐標,于是得到點通過平移可得點,利用同樣平移得到點坐標,當為邊,由四邊形為平行四邊形得到,,則可確定坐標,進而可求,及,易得點坐標.
試題解析:()∵、,,
∴,,
∵為點關于的對稱點,
∴,,
∴,
∴四邊形為菱形.
()∵四邊形為菱形,
∴,
而,,
∴,
把代入得,
∴反比例函數(shù)解析式為.
()當為對角線,如圖,
∵四邊形為平行四邊形,
∴點向右平移個單位可得點,點向右平移個單位可得點,
∴點的橫坐標為,
當時,,則,
∴點向右平移個單位,再向上平移單位可得點,
∴點向右平移個單位可得點,再向上平移單位可得點,此時點坐標為;
當為邊,
∵四邊形為平行四邊形,
∴,,
∴點的橫坐標為,則,
∴,
∴,或,
此時點坐標為或,
綜上所述,滿足條件的點的坐標為,,.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為100米的正三角形花壇的邊上,甲、乙兩人分別從兩個頂點同時出發(fā),按逆時針方向行走,已知甲的速度是42米/分,乙的速度是34米/分.出發(fā)后________分鐘,甲乙兩人第一次走在同一條邊上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網格中,每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.網格中有一個格點△ABC(即三角形的頂點都在格點上).
(1)在圖中作出△ABC關于直線l對稱的△A1B1C1 (要求A與A1,B與B1,C與C1相對應);
(2)求△ABC的面積;
(3)在直線l上找一點P,使得△PAC的周長最小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了倡導“節(jié)約用水,從我做起”的活動,某市政府決定對市直機關500戶家庭的用水情況作一次調查,調查小組隨機抽查了其中100戶家庭一年的月平均用水量(單位:噸).并將調查結果制成了如圖所示的條形統(tǒng)計圖.
(1)求這100個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(2)根據(jù)樣本數(shù)據(jù),估計該市直機關500戶家庭中月平均用水量不超過12噸的約有多少戶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BOC=9°,點A在OB上,且OA=1,按下列要求畫圖:
以A為圓心,1為半徑向右畫弧交OC于點A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫弧交OB于點A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫弧交OC于點A3,得第3條線段A2A3;…這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我們認識的多邊形中,有很多軸對稱圖形.有些多邊形,邊數(shù)不同對稱軸的條數(shù)也不同;有些多邊形,邊數(shù)相同但卻有不同數(shù)目的對稱軸.回答下列問題:
(1)非等邊的等腰三角形有________條對稱軸,非正方形的長方形有________條對稱軸,等邊三角形有___________條對稱軸;
(2)觀察下列一組凸多邊形(實線畫出),它們的共同點是只有1條對稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類似的修改方式,請你在圖1-4和圖1-5中,分別修改圖1-2和圖1-3,得到一個只有1條對稱軸的凸五邊形,并用實線畫出所得的凸五邊形;
(3)小明希望構造出一個恰好有2條對稱軸的凸六邊形,于是他選擇修改長方形,圖2中是他沒有完成的圖形,請用實線幫他補完整個圖形;
(4)請你畫一個恰好有3條對稱軸的凸六邊形,并用虛線標出對稱軸.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1=∠2,要得到△ABD≌△ACE,從下列條件中補選一個,則錯誤的是( )
A.AB=AC B.DB=EC C.∠ADB=∠AEC D.∠B=∠C
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com