【題目】“行千里致廣大”是重慶人民向大家發(fā)出的旅游邀請(qǐng).如圖,某建筑物上有一個(gè)旅游宣傳語(yǔ)廣告牌,小亮在A處測(cè)得該廣告牌頂部E處的仰角為45°,然后沿坡比為5:12的斜坡AC行走65米至C處,在C處測(cè)得廣告牌底部F處的仰角為76°,已知CD與水平面AB平行,EG與CD垂直,且EF=2米,則廣告牌頂部E到CD的距離EG為( 。▍⒖紨(shù)據(jù):sin76°≈0.97,cos76°≈0.24.tan76°≈4)
A.46B.44C.71D.69
【答案】A
【解析】
作CM⊥AB于M,延長(zhǎng)EG交AB于N,根據(jù)矩形的性質(zhì)得到GN=CM,MN=CG,根據(jù)坡度的概念求出AM、CM,根據(jù)等腰直角三角形的性質(zhì)列式求出CG,結(jié)合圖形計(jì)算即可.
解:作CM⊥AB于M,延長(zhǎng)EG交AB于N,
則GN⊥AB,
∴四邊形CMNG為矩形,
∴GN=CM,MN=CG,
斜坡AC的坡比為5:12,
則CM=5x,AM=12x,
由勾股定理得,(5x)2+(12x)2=652,
解得,x=5,
∴CM=5x=25,AM=12x=60,
在Rt△FCG中,tan∠FCG=,即=tan76°=4,
∴FG=4CG,
∵∠EAN=45°,
∴AN=EN,即60+CG=2+4CG+25,
解得,CG=11,
∴FG=44,
∴EG=EF+FG=46(米)
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】[問(wèn)題情境]
我們知道數(shù)軸上的兩點(diǎn)A、B的距離|AB|=|xA-xB|,那么如果已知平面上兩點(diǎn)P1(x1,y1),P2(x2,y2),如何求P1,P2的距離d(P1P2)呢?
下面我們就來(lái)研究這個(gè)問(wèn)題.
問(wèn)題 一般地,已知平面上兩點(diǎn)P1(x1,y1),P2(x2,y2),如何求點(diǎn)P1和P2的距離?
答: 當(dāng)x1≠x2,y1=y2時(shí),|P1P2|=|x2-x1|;
當(dāng)x1=x2,y1≠y2時(shí),|P1P2|=|y2-y1|;
當(dāng)x1≠x2,y1≠y2時(shí),如圖,
在Rt△P1QP2中,由勾股定理知,
|P1P2|2=|P1Q|2+|QP2|2,所以d(P1,P2)=|P1P2|=.
歸納:兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離公式d(P1,P2)=|P1P2|=.
解決問(wèn)題:
(1)已知A(2,-4),B(-2,3),求d(A,B)
(2)已知點(diǎn)A(1,2),B(3,4),C(5,0),求證:△ABC是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一輛汽車(chē)在高速公路上行駛的平均速度比在普通公路上行駛的平均速度提高80%,那么行駛81千米的高速公路比行駛同等長(zhǎng)度的普通公路所用時(shí)間將會(huì)縮短36分鐘,求該汽車(chē)在高速公路上行駛的平均速度是多少千米∕小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC,按如下步驟作圖:
(1)以A圓心,AB長(zhǎng)為半徑畫(huà);
(2)以C為圓心,CB長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)D;
(3)連接BD,與AC交于點(diǎn)E,連接AD,CD.
①四邊形ABCD是中心對(duì)稱(chēng)圖形;
②△ABC≌△ADC;
③AC⊥BD且BE=DE;
④BD平分∠ABC.
其中正確的是( )
A.①② B.②③ C.①③ D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)口袋中裝有7個(gè)只有顏色不同的球,其中3個(gè)白球,4個(gè)黑球.
(1)求從中隨機(jī)抽取出一個(gè)黑球的概率是多少?
(2)若往口袋中再放入x個(gè)白球和y個(gè)黑球,從口袋中隨機(jī)取出一個(gè)白球的概率是,求y與x之間的函數(shù)關(guān)系式;
(3)若在(2)的條件下,放入白球x的范圍是0<x<4(x為整數(shù)),求y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】借鑒我們已有的研究函數(shù)的經(jīng)驗(yàn),探索函數(shù)y=|x2﹣2x﹣3|﹣2圖象和性質(zhì),探究過(guò)程如下,請(qǐng)補(bǔ)充完整.
(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對(duì)應(yīng)值列表如下:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 10 | m | ﹣2 | 1 | n | 1 | ﹣2 | 3 | 10 | … |
其中,m= ,n= ;
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫(huà)出函數(shù)圖象;
(3)觀察函數(shù)圖象:
①當(dāng)方程|x2﹣2x﹣3|=b+2有且僅有兩個(gè)不相等的實(shí)數(shù)根時(shí),根據(jù)函數(shù)圖象直接寫(xiě)出b的取值范圍為 .
②在該平面直角坐標(biāo)系中畫(huà)出直線y=x+2的圖象,根據(jù)圖象直接寫(xiě)出該直線與函數(shù)y=|x2﹣2x﹣3|﹣2的交點(diǎn)橫坐標(biāo)為: (結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,DB⊥AB于B,點(diǎn)C是弧AB上的任一點(diǎn),過(guò)點(diǎn)C作⊙O的切線交BD于點(diǎn)E.連接OE交⊙O于F.
(1)求證:CE=ED;
(2)填空:
①當(dāng)∠D= 時(shí),四邊形OCEB是正方形;
②當(dāng)∠D= 時(shí),四邊形OACF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為3的⊙O分別與x軸,y軸交于A,D兩點(diǎn),⊙O上兩個(gè)動(dòng)點(diǎn)B,C,使∠BAC=45°恒成立,設(shè)△ABC的重心為G,則DG的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、C分別在反比例函數(shù)y=和y=上,連接OB,OC,BC且OB⊥OC,則的值為( )
A.5B.1C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com