【題目】在Rt△ABC中,AB=AC,OB=OC,∠A=90°,∠MON=α,分別交直線AB、AC于點M、N.
(1)如圖1,當(dāng)α=90°時,求證:AM=CN;
(2)如圖2,當(dāng)α=45°時,問線段BM、MN、AN之間有何數(shù)量關(guān)系,并證明;
(3)如圖3,當(dāng)α=45°時,旋轉(zhuǎn)∠MON,問線段之間BM、MN、AN有何數(shù)量關(guān)系?并證明.
【答案】(1)證明見解析;(2)BM=AN+MN,理由見解析;(3)MN=AN+BM.理由見解析.
【解析】
(1)根據(jù)題意AB=AC,∠BAC=90°,得出是一個等腰直角三角形,再根據(jù)三線合一得出OA=OB=OC,從而∠ABO=∠ACO=∠BAO=∠CAO=45°,且AO⊥BC,從而得出∠MON=∠AOC=90°,再又因為等角的余角相等,所以∠AOM=∠CON,所以通過證明△AOM≌△CON得出AM=CN
(2)根據(jù)題意,在BA上截取BG=AN,連接GO,AO,先證明△BGO≌△AON,再證明△GMO≌△NMO得出GM=MN,從而證明出BM=AN+MN
(3)根據(jù)題意,過點O作OG⊥ON,連接AO,先證明△NAO≌△GBO,得到AN=
GB,GO=ON,再證明△MON≌△MOG得到MN=MG,從而進(jìn)一步證明出MN=AN+BM
證明:(1)如圖1,連接OA,
∵AB=AC,∠BAC=90°,OB=OC,
∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,
∴∠MON=∠AOC=90°,
∴∠AOM=∠CON,且AO=CO,∠BAO=∠ACO=45°,
∴△AOM≌△CON(ASA)
∴AM=CN;
(2)BM=AN+MN,
理由如下:如圖2,在BA上截取BG=AN,連接GO,AO,
∵AB=AC,∠BAC=90°,OB=OC,
∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,
∵BG=AN,∠ABO=∠NAO=45°,AO=BO,
∴△BGO≌△AON(SAS)
∴OG=ON,∠BOG=∠AON,
∵∠MON=45°=∠AOM+∠AON,
∴∠AOM+∠BOG=45°,且∠AOB=90°,
∴∠MOG=∠MON=45°,且MO=MO,GO=NO,
∴△GMO≌△NMO(SAS)
∴GM=MN,
∴BM=BG+GM=AN+MN;
(3)MN=AN+BM,
理由如下:如圖3,過點O作OG⊥ON,連接AO,
∵AB=AC,∠BAC=90°,OB=OC,
∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,
∴∠GBO=∠NAO=135°,
∵MO⊥GO,
∴∠NOG=90°=∠AOB,
∴∠BOG=∠AON,且AO=BO,∠NAO=∠GBO,
∴△NAO≌△GBO(ASA)
∴AN=GB,GO=ON,
∵MO=MO,∠MON=∠GOM=45°,GO=NO,
∴△MON≌△MOG(SAS)
∴MN=MG,
∵MG=MB+BG,
∴MN=AN+BM.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在學(xué)習(xí)《圓》這一章時,老師給同學(xué)們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:過圓外一點作圓的切線.
已知:P為⊙O外一點.
求作:經(jīng)過點P的⊙O的切線.
小敏的作法如下:
如圖,
(1)連接OP,作線段OP的垂直平分線MN交OP于點C;
(2)以點C為圓心,CO的長為半徑作圓,交⊙O于A,B兩點;
(3)作直線PA,PB.所以直線PA,PB就是所求作的切線.
老師認(rèn)為小敏的作法正確.
請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是_____;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠D=60°,點M在線段AD上,DM= ,AM=2,點E從點D出發(fā),沿著D-C-B-A勻速運動,速度為每秒2個單位長度,達(dá)到A點后停止運動,設(shè)△MDE的面積為y,點E運動的時間為t(s),y與t的部分函數(shù)關(guān)系如圖②所示.
(1)如圖①中,DC=_____,如圖②中,m=_______,n=_____.
(2)在E點運動過程中,將平行四邊形沿ME所在直線折疊,則t為何值時,折疊后頂點D的對應(yīng)點D′落在平行四邊形的一邊上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與軸交于點、(點在點的左側(cè)),與軸交于點.
(1)求點,點的坐標(biāo);
(2)我們規(guī)定:對于直線,直線,若,則直線;反過來也成立.請根據(jù)這個規(guī)定解決下列問題:
①直線與直線是否垂直?并說明理由;
②若點是拋物線的對稱軸上一動點,是否存在點與點,點構(gòu)成以為直角邊的直角三角形?若存在,請求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列網(wǎng)格圖中,每個小正方形的邊長均為1個單位.在Rt△ABC中,∠C=90°,AC=3,BC=2.
(1)試在圖中畫出將△ABC以B為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△A1BC1;
(2)若點B的坐標(biāo)為(-1,-4),點C的坐標(biāo)為(-3,-4),試在圖中畫出直角坐標(biāo)系,并寫出點A的坐標(biāo);
(3)根據(jù)(2)的坐標(biāo)系作出與△ABC關(guān)于原點對稱的圖形△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是正方形ABCD內(nèi)一點,點P到點A,B和D的距離分別為1,2,.△ADP沿點A旋轉(zhuǎn)至△ABP′,連接PP′,并延長AP與BC相交于點Q.
(1)求證:△APP′是等腰直角三角形;
(2)求∠BPQ的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋子中有1個紅球,1個綠球和n個白球,這些球除顏色外無其他差別.
(1)從袋中隨機摸出一個球,記錄其顏色,然后放回.大量重復(fù)該實驗,發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于0.25,求n的值;
(2)在該不透明袋子中同時摸出兩個球,求摸出的兩個球顏色不同的概率.(要求列表或畫樹狀圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻長25m)的空地上修建一個矩形綠化帶ABCD,綠化帶一邊靠墻,另三邊用總長為40m的柵欄圍。ㄈ鐖D).若設(shè)綠化帶的BC邊長為x m,綠化帶的面積為y m2.
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時,滿足條件的綠化帶的面積最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線的對稱軸為,且經(jīng)過點A(2,1),點是拋物線上的動點,的橫坐標(biāo)為,過點作軸,垂足為,交于點,點關(guān)于直線的對稱點為,連接,,過點A作AE⊥x軸,垂足為E.則當(dāng)( )時,的周長最小.
A.1B.1.5C.2D.2.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com