【題目】依托獨特的氣候資源,天然肥沃的優(yōu)質(zhì)土壤,廣元市大力推廣蔬菜種植,疫情防控期間,某蔬菜種植基地通過電商平臺將蔬菜銷往全國各地,銷量大幅度提升.該基地為提高蔬菜產(chǎn)量,計劃對甲、乙兩種型號蔬菜大棚進行改造,根據(jù)預(yù)算,改造2個甲種型號大棚比1個乙種型號大棚多需資金6萬元,改造1個甲種型號大棚和2個乙種型號大棚共需資金48萬元.

1)求改造1個甲種型號和1個乙種型號大棚所需資金分別是多少萬元;

2)已知改造1個甲種型號大棚需要5天,改造1個乙種型號大棚需要3天,該基地計劃用126萬元資金改造一定數(shù)量的兩種型號蔬菜大棚,且要求改造時間總共不超過50天,請問:有幾種改造方案?哪種方案改造時間最短?

【答案】1)改造1個甲種型號大棚需12萬元,改造1個乙種型號大棚需18萬元;(2)有3種改造方案,其中改造3個甲種型號大棚,改造5個乙種型號大棚所需改造時間最短

【解析】

1)本題有兩個相等關(guān)系:改造2個甲種型號大棚的費用-改造1個乙種型號大棚的費用=6萬元,改造1個甲種型號大棚的費用+改造2個乙種型號大棚的費用=48萬元,據(jù)此設(shè)未知數(shù)列方程組解答即可;

2)設(shè)改造甲種型號大棚a個,改造乙種型號大棚b個,由改造資金共126萬元可得關(guān)于a、b的方程,進而可用含a的代數(shù)式表示b,由改造時間總共不超過50天可得關(guān)于a的不等式,從而可求出a的取值范圍,然后根據(jù)一次函數(shù)的性質(zhì)即可求出改造時間的最小值.

解:(1)設(shè)改造1個甲種型號大棚需x萬元,改造1個乙種型號大棚需y萬元.

由題意,得,解得:,

答:改造1個甲種型號大棚需12萬元,改造1個乙種型號大棚需18萬元;

2)設(shè)改造甲種型號大棚a個,改造乙種型號大棚b個.

由題意,得12a+18b=126,∴b=7-a

由題意,得5a+350,解得:a

ab為正整數(shù),

a的值為3,69,所以共有3種改造方案;

設(shè)改造時間為w天,則w=5a+3=3a+21

30,∴當(dāng)a=3時,w取得最小值,此時b=5

∴有3種改造方案,其中改造3個甲種型號大棚,改造5個乙種型號大棚所需改造時間最短.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為4的等邊△ABCAC邊在x軸上,點By軸的正半軸上,以OB為邊作等邊△OBA1,邊OA1AB交于點O1,以O1B為邊作等邊△O1BA2,邊O1A2A1B交于點O2,以O2B為邊作等邊△O2BA3,邊O2A3A2B交于點O3,依此規(guī)律繼續(xù)作等邊△On1BAn,則的橫坐標(biāo)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC⊙O的直徑,BC⊙O的弦,點P⊙O外一點,連接PAPB,AB,已知∠PBA=∠C

1)求證:PB⊙O的切線;

2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD 中,對角線 AC BD 相交于點 O ,點 E F 分別為 OB , OD 的中點,延長 AE G ,使 EG AE ,連接 CG

1)求證: ABE≌△CDF ;

2)當(dāng) AB AC 滿足什么數(shù)量關(guān)系時,四邊形 EGCF 是矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正五邊形的外接圓中,任一邊所對的圓周角的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于四個數(shù),,,及四種運算,,,,列算式解答:

1)求這四個數(shù)的和;

2)在這四個數(shù)中選出兩個數(shù),按要求進行下列計算,使得:

①兩數(shù)差的結(jié)果最小;

②兩數(shù)積的結(jié)果最大;

3)在這四個數(shù)中選出三個數(shù),在四種運算中選出兩種,組成一個算式,使運算結(jié)果等于沒選的那個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師抽取了九年級部分男生擲實心球的成績進行整理,分成5個小組(x表示成績,單位:米).A組:5.25≤x6.25;B組:6.25≤x7.25C組:7.25≤x8.25;D組:8.25≤x9.25;E組:9.25≤x10.25,規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.并繪制出扇形統(tǒng)計圖和頻數(shù)分布直方圖(不完整).

1)抽取的這部分男生有______人,請補全頻數(shù)分布直方圖;

2)抽取的這部分男生成績的中位數(shù)落在_____組?扇形統(tǒng)計圖中D組對應(yīng)的圓心角是多少度?

3)如果九年級有男生400人,請你估計他們擲實心球的成績達到合格的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制了如下尚不完整的統(tǒng)計圖表:

組別

A

B

C

D

E

分組(元)

0x<30

30x<60

60x<90

90x<120

120x<150

頻數(shù)

4

a

20

8

2

請根據(jù)以上圖標(biāo),解答下列問題:

1)填空:這次調(diào)查的樣本容量是 a= ,m= ;

2)補全頻數(shù)分布直方圖;

3)求扇形統(tǒng)計圖中扇形B的圓心角度數(shù);

4)該校共有1000人,請估計每月零花錢的數(shù)額x30x<90范圍的人數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表記錄了甲、乙、丙、丁四名同學(xué)最近幾次數(shù)學(xué)考試成績的平均數(shù)與方差.根據(jù)表中數(shù)據(jù),要從中選擇一名成績好且發(fā)揮穩(wěn)定的同學(xué)參加數(shù)學(xué)競賽,應(yīng)該選擇__________(填, , ).

平均數(shù)(分)

92

95

95

92

方差

3.6

3.6

7.4

8.1

查看答案和解析>>

同步練習(xí)冊答案