【題目】(1)(學習心得)于彤同學在學習完“圓”這一章內容后,感覺到一些幾何問題如果添加輔助圓,運用圓的知識解決,可以使問題變得非常容易.例如:如圖1,在中,,是外一點,且,求的度數(shù).若以點為圓心,為半徑作輔助,則、必在上,是的圓心角,而是圓周角,從而可容易得到=________.
(2)(問題解決)如圖2,在四邊形中,,,求的度數(shù).
(3)(問題拓展)如圖3,是正方形的邊上兩個動點,滿足.連接交于點,連接交于點,連接交于點,若正方形的邊長為2,則線段長度的最小值是_______.
【答案】(1)45;(2)25°;(3)
【解析】
(1)利用同弦所對的圓周角是所對圓心角的一半求解.
(2)由A、B、C、D共圓,得出∠BDC=∠BAC,
(3)根據(jù)正方形的性質可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“邊角邊”證明△ABE和△DCF全等,根據(jù)全等三角形對應角相等可得∠1=∠2,利用“SAS”證明△ADG和△CDG全等,根據(jù)全等三角形對應角相等可得∠2=∠3,從而得到∠1=∠3,然后求出∠AHB=90°,取AB的中點O,連接OH、OD,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根據(jù)三角形的三邊關系可知當O、D、H三點共線時,DH的長度最。
(1)如圖1,∵AB=AC,AD=AC,
∴以點A為圓心,點B、C、D必在⊙A上,
∵∠BAC是⊙A的圓心角,而∠BDC是圓周角,
∴∠BDC=∠BAC=45°,
故答案是:45;
(2)如圖2,取BD的中點O,連接AO、CO.
∵∠BAD=∠BCD=90°,
∴點A、B、C、D共圓,
∴∠BDC=∠BAC,
∵∠BDC=25°,
∴∠BAC=25°;
(3)在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,
在△ABE和△DCF中,
,
∴△ABE≌△DCF(SAS),
∴∠1=∠2,
在△ADG和△CDG中,
,
∴△ADG≌△CDG(SAS),
∴∠2=∠3,
∴∠1=∠3,
∵∠BAH+∠3=∠BAD=90°,
∴∠1+∠BAH=90°,
∴∠AHB=180°90°=90°,
取AB的中點O,連接OH、OD,
則OH=AO=AB=1,
在Rt△AOD中,OD=,
根據(jù)三角形的三邊關系,OH+DH>OD,
∴當O、D、H三點共線時,DH的長度最小,
最小值=ODOH=1.
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經過點,將繞點順時針方向旋轉(),交于點,交于點,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】采用東陽南棗通過古法熬制而成的蜜棗是我們東陽的土特產之一,已知蜜棗每袋成本10元.試銷后發(fā)現(xiàn)每袋的銷售價(元)與日銷售量(袋)之間的關系如下表:
(元) | 15 | 20 | 30 | … |
(袋) | 25 | 20 | 10 | … |
若日銷售量是銷售價的一次函數(shù),試求:
(1)日銷售量(袋)與銷售價(元)的函數(shù)關系式.
(2)要使這種蜜棗每日銷售的利潤最大,每袋的銷售價應定為多少元?每日銷售的最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市扶貧辦在精準扶貧工作中,組織30輛汽車裝運花椒、核桃、甘藍向外地銷售.按計劃30輛車都要裝運,每輛汽車只能裝運同一種產品,且必須裝滿,根據(jù)下表提供的信息,解答以下問題:
產品名稱 | 核桃 | 花椒 | 甘藍 |
每輛汽車運載量(噸) | 10 | 6 | 4 |
每噸土特產利潤(萬元) | 0.7 | 0.8 | 0.5 |
若裝運核桃的汽車為x輛,裝運甘藍的車輛數(shù)是裝運核桃車輛數(shù)的2倍多1,假設30輛車裝運的三種產品的總利潤為y萬元.
(1)求y與x之間的函數(shù)關系式;
(2)若裝花椒的汽車不超過8輛,求總利潤最大時,裝運各種產品的車輛數(shù)及總利潤最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一批襯衫,每件成本為50元,如果按每件60元出售,可銷售800件;如果每件提價5元出售,其銷售量就減少100件,如果商場銷售這批襯衫要獲利潤12000元,又使顧客獲得更多的優(yōu)惠,那么這種襯衫售價應定為多少元?
(1)設提價了元,則這種襯衫的售價為___________元,銷售量為____________件.
(2)列方程完成本題的解答.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經過A(﹣1,0),B(3,0)兩點,交y軸于點C,點D為拋物線的頂點,連接BD,點H為BD的中點.請解答下列問題:
(1)求拋物線的解析式及頂點D的坐標;
(2)在y軸上找一點P,使PD+PH的值最小,則PD+PH的最小值為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近年來,各地“廣場舞”噪音干擾的問題倍受關注.相關人員對本地區(qū)15~65歲年齡段的市民進行了隨機調查,并制作了如下相應的統(tǒng)計圖.市民對“廣場舞”噪音干擾的態(tài)度有以下五種:A.沒影響 B.影響不大 C.有影響,建議做無聲運動 D.影響很大,建議取締 E.不關心這個問題
根據(jù)以上信息解答下列問題:
(1)根據(jù)統(tǒng)計圖填空: ,A區(qū)域所對應的扇形圓心角為 度;
(2)在此次調查中,“不關心這個問題”的有25人,請問一共調查了多少人?
(3)將條形統(tǒng)計圖補充完整;
(4)若本地共有14萬市民,依據(jù)此次調查結果估計本地市民中會有多少人給出建議?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P從出發(fā),沿所示方向運動,每當碰到長方形OABC的邊時會進行反彈,反彈時反射角等于入射角,當點P第2018次碰到長方形的邊時,點P的坐標為______.
【答案】
【解析】
根據(jù)反射角與入射角的定義作出圖形;由圖可知,每6次反彈為一個循環(huán)組依次循環(huán),用2018除以6,根據(jù)商和余數(shù)的情況確定所對應的點的坐標即可.
解:如圖所示:經過6次反彈后動點回到出發(fā)點,
,
當點P第2018次碰到矩形的邊時為第337個循環(huán)組的第2次反彈,
點P的坐標為.
故答案為:.
【點睛】
此題主要考查了點的坐標的規(guī)律,作出圖形,觀察出每6次反彈為一個循環(huán)組依次循環(huán)是解題的關鍵.
【題型】填空題
【結束】
15
【題目】為了保護環(huán)境,某公交公司決定購買A、B兩種型號的全新混合動力公交車共10輛,其中A種型號每輛價格為a萬元,每年節(jié)省油量為萬升;B種型號每輛價格為b萬元,每年節(jié)省油量為萬升:經調查,購買一輛A型車比購買一輛B型車多20萬元,購買2輛A型車比購買3輛B型車少60萬元.
請求出a和b;
若購買這批混合動力公交車每年能節(jié)省萬升汽油,求購買這批混合動力公交車需要多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
工廠加工某種新型材料,首先要將材料進行加溫處理,使這種材料保持在一定的溫度范圍內方可進行繼續(xù)加工處理這種材料時,材料溫度是時間的函數(shù)下面是小明同學研究該函數(shù)的過程,把它補充完整:
在這個函數(shù)關系中,自變量x的取值范圍是______.
如表記錄了17min內10個時間點材料溫度y隨時間x變化的情況:
時間 | 0 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | |
溫度 | 15 | 24 | 42 | 60 | m |
上表中m的值為______.
如圖,在平面直角坐標系xOy中,已經描出了上表中的部分點根據(jù)描出的點,畫出該函數(shù)的圖象.
根據(jù)列出的表格和所畫的函數(shù)圖象,可以得到,當時,y與x之間的函數(shù)表達式為______,當時,y與x之間的函數(shù)表達式為______.
根據(jù)工藝的要求,當材料的溫度不低于時,方可以進行產品加工,在圖中所示的溫度變化過程中,可以進行加工的時間長度為______min.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com