【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,其對(duì)稱軸為x=﹣1,給出下列結(jié)論:①abc>0;②2a+b=0;③a+b+c>0;④a﹣b+c<0,其中正確的結(jié)論是( )
A. ①②B. ①④C. ②③D. ③④
【答案】D
【解析】
由拋物線開口方向得到a>0,由拋物線的對(duì)稱軸為直線x=-=-1得到b=2a>0,由拋物線與y軸的交點(diǎn)在x軸下方得到c<0,所以abc<0;由x=1時(shí),函數(shù)值為正數(shù)得到a+b+c>0;由x=-1時(shí),函數(shù)值為負(fù)數(shù)得到a-b+c<0.
解:∵拋物線開口向上,∴a>0,
∵拋物線的對(duì)稱軸為直線x=-=-1,∴b=2a>0,
∵拋物線與y軸的交點(diǎn)在x軸下方,∴c<0,
∴abc<0,所以①錯(cuò)誤;
∵b=2a,∴2a-b=0,所以②錯(cuò)誤;
∵x=1時(shí),y>0,∴a+b+c>0,所以③正確;
∵x=-1時(shí),y<0,
∴a-b+c<0,所以④正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn)為B′,連接AB′,CB′,CB′交AD于F點(diǎn).
(1)如圖1,∠ABC=90°,求證:F為CB′的中點(diǎn);
(2)小宇通過觀察、實(shí)驗(yàn)、提出猜想:如圖2,在點(diǎn)B繞點(diǎn)A旋轉(zhuǎn)的過程中,點(diǎn)F始終為CB′的中點(diǎn).小宇把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:過點(diǎn)B′作B′G∥CD交AD于G點(diǎn),只需證三角形全等;
想法2:連接BB′交AD于H點(diǎn),只需證H為BB′的中點(diǎn);
想法3:連接BB′,BF,只需證∠B′BC=90°.
…
請(qǐng)你參考上面的想法,證明F為CB′的中點(diǎn).(一種方法即可)
(3)如圖3,當(dāng)∠ABC=135°時(shí),AB′,CD的延長(zhǎng)線相交于點(diǎn)E,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某區(qū)2018年初中畢業(yè)生畢業(yè)后的去向,某區(qū)教育部門對(duì)部分初三學(xué)生進(jìn)行了抽樣調(diào)查,就初三學(xué)生的四種去向(A,讀普通高中;B,讀職業(yè)高中;C,直接進(jìn)入社會(huì)就業(yè);D,其它)進(jìn)行數(shù)據(jù)統(tǒng)計(jì),并繪制了兩幅不完整的統(tǒng)計(jì)圖(a)、(b).請(qǐng)問:
(1)此次共調(diào)查了多少名初中畢業(yè)生?
(2)將兩幅統(tǒng)計(jì)圖中不完整的部分補(bǔ)充完整;
(3)若某區(qū)2018年初三畢業(yè)生共有3500人,請(qǐng)估計(jì)2019年初三畢業(yè)生中讀普通高中的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,則一次函數(shù)y=bx+b2﹣4ac與反比例函數(shù)y=在同一坐標(biāo)系內(nèi)的圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.《九章算術(shù)》中記
載:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,間徑幾何?”(如圖①)
閱讀完這段文字后,小智畫出了一個(gè)圓柱截面示意圖(如圖②),其中BO⊥CD于點(diǎn)A,求間徑就是要求⊙O的直徑.再次閱讀后,發(fā)現(xiàn)AB=______寸,CD=____寸(一尺等于十寸),通過運(yùn)用有關(guān)知識(shí)即可解決這個(gè)問題.請(qǐng)你補(bǔ)全題目條件,并幫助小智求出⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程m x2-(m+2)x+2=0(m≠0).
(1)求證:無論m為何值時(shí),這個(gè)方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求正整數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組借助無人飛機(jī)航拍,如圖,無人飛機(jī)從A處飛行至B處需12秒,在地面C處同一方向上分別測(cè)得A處的仰角為75°,B處的仰角為30°.已知無人飛機(jī)的飛行速度為3米/秒,則這架無人飛機(jī)的飛行高度為(結(jié)果保留根號(hào))__________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+4與反比例函數(shù)y=的圖象相交于A(-3,a)和B兩點(diǎn).
(1)求k的值;
(2)直線y=m(m>0)與直線AB相交于點(diǎn)M,與反比例函數(shù)的圖象相交于點(diǎn)N.若MN=4,求m的值;
(3)直接寫出不等式>x的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,以O為圓心,OE長(zhǎng)為半徑的小半圓交AB于E,F兩點(diǎn),弦AC是小半圓的切線,D為切點(diǎn),已知AO=4,EO=2,那么陰影部分的面積是__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com