3點至4點間,時針與分針何時重合?

 

答案:
解析:

解:設3y分時,時針與分針重合,則時針轉過度,分針轉過6y度,。解得,所以時針與分針在3分重合。

 


提示:

每小時時針轉動30°,每分鐘分針轉動,重合時度差為0

 


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1至圖4中,兩平行線AB、CD間的距離均為6,點M為AB上一定點.
思考
如圖1,圓心為0的半圓形紙片在AB,CD之間(包括AB,CD),其直徑MN在AB上,MN=8,點P為半圓上一點,設∠MOP=α.
當α=
 
度時,點P到CD的距離最小,最小值為
 

探究一
在圖1的基礎上,以點M為旋轉中心,在AB,CD 之間順時針旋轉該半圓形紙片,直到不能再轉動為止,如圖2,得到最大旋轉角∠BMO=
 
度,此時點N到CD的距離是
 

探究二
將如圖1中的扇形紙片NOP按下面對α的要求剪掉,使扇形紙片MOP繞點M在AB,CD之間順時針旋轉.
(1)如圖3,當α=60°時,求在旋轉過程中,點P到CD的最小距離,并請指出旋轉角∠BMO的最大值;
(2)如圖4,在扇形紙片MOP旋轉過程中,要保證點P能落在直線CD上,請確定α的取值范圍.
(參考數(shù)椐:sin49°=
3
4
,cos41°=
3
4
,tan37°=
3
4
.)
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•和平區(qū)模擬)圖①至圖③中,兩平行線AB、CD間的距離均為6,點M為AB上一定點.扇形紙片OMP在AB、CD之間(包括AB、CD),扇形OMP的圓心角∠MOP=α,半徑OM=4.如圖①,扇形的半徑OM在AB上.如圖②③,將扇形紙片OMP繞點M在AB、CD之間順時針旋轉.
(Ⅰ)如圖②,當α=60°時,在旋轉過程中,點P到直線CD的最小距離是
2
2
,旋轉角∠BMO的最大值是
90°
90°
;
(Ⅱ)如圖③,在扇形紙片OMP旋轉的過程中,要使點P落在直線CD上,α的最大值是
120°
120°

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆安徽省南陵縣惠民中學九年級上學期第二次月考數(shù)學試卷(帶解析) 題型:解答題

如圖1至圖4中,兩平行線AB、CD間的距離均為6,點M為AB上一定點.

思考:
如圖1,圓心為0的半圓形紙片在AB,CD之間(包括AB,CD),其直徑MN在AB上,MN=8,點P為半圓上一點,設∠MOP=α。
當α=    度時,點P到CD的距離最小,最小值為    。
探究一:
在圖1的基礎上,以點M為旋轉中心,在AB,CD 之間順時針旋轉該半圓形紙片,直到不能再轉動為止,如圖2,得到最大旋轉角∠BMO=    度,此時點N到CD的距離是    。
探究二:
將如圖1中的扇形紙片NOP按下面對α的要求剪掉,使扇形紙片MOP繞點M在AB,CD之間順時針旋轉。
(1)如圖3,當α=60°時,求在旋轉過程中,點P到CD的最小距離,并請指出旋轉角∠BMO的最大值;
(2)如圖4,在扇形紙片MOP旋轉過程中,要保證點P能落在直線CD上,請確定α的最大值。

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年安徽省九年級上學期第二次月考數(shù)學試卷(解析版) 題型:解答題

如圖1至圖4中,兩平行線AB、CD間的距離均為6,點M為AB上一定點.

思考:

如圖1,圓心為0的半圓形紙片在AB,CD之間(包括AB,CD),其直徑MN在AB上,MN=8,點P為半圓上一點,設∠MOP=α。

當α=     度時,點P到CD的距離最小,最小值為     

探究一:

在圖1的基礎上,以點M為旋轉中心,在AB,CD 之間順時針旋轉該半圓形紙片,直到不能再轉動為止,如圖2,得到最大旋轉角∠BMO=     度,此時點N到CD的距離是     。

探究二:

將如圖1中的扇形紙片NOP按下面對α的要求剪掉,使扇形紙片MOP繞點M在AB,CD之間順時針旋轉。

(1)如圖3,當α=60°時,求在旋轉過程中,點P到CD的最小距離,并請指出旋轉角∠BMO的最大值;

(2)如圖4,在扇形紙片MOP旋轉過程中,要保證點P能落在直線CD上,請確定α的最大值。

 

查看答案和解析>>

同步練習冊答案