【題目】圖1是某市2009年4月5日至14日每天最低氣溫的折線統(tǒng)計圖.
(1)圖2是該市2007年4月5日至14日每天最低氣溫的頻數(shù)分布直方圖,根據(jù)圖1提供的信息,補全圖2中頻數(shù)分布直方圖;
(2)在這10天中,最低氣溫的眾數(shù)是____,中位數(shù)是____,方差是_____.
(3)請用扇形圖表示出這十天里溫度的分布情況.
【答案】(1)作圖見解析;(2)7,7.5,2.8;(3)見解析.
【解析】
(1)根據(jù)圖1找出8、9、10℃的天數(shù),然后補全統(tǒng)計圖即可;
(2)根據(jù)眾數(shù)的定義,找出出現(xiàn)頻率最高的溫度;按照從低到高排列,求出第5、6兩個溫度的平均數(shù)即為中位數(shù);先求出平均數(shù),再根據(jù)方差的定義列式進行計算即可得解;
(3)求出7、8、9、10、11℃的天數(shù)在扇形統(tǒng)計圖中所占的度數(shù),然后作出扇形統(tǒng)計圖即可.
(1)由圖1可知,8℃有2天,9℃有0天,10℃有2天,
補全統(tǒng)計圖如圖;
(2)根據(jù)條形統(tǒng)計圖,7℃出現(xiàn)的頻率最高,為3天,
所以,眾數(shù)是7;
按照溫度從小到大的順序排列,第5個溫度為7℃,第6個溫度為8℃,
所以,中位數(shù)為(7+8)=7.5;
平均數(shù)為(6×2+7×3+8×2+10×2+11)=×80=8,
所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],
=(8+3+0+8+9),
=×28,
=2.8;
(3)6℃的度數(shù),×360°=72°,
7℃的度數(shù),×360°=108°,
8℃的度數(shù),×360°=72°,
10℃的度數(shù),×360°=72°,
11℃的度數(shù),×360°=36°,
作出扇形統(tǒng)計圖如圖所示.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,過點D作DE∥BC交AB于點E,DF∥AB交BC于點F.
(1)求證:四邊形BEDF為菱形;
(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,E、F分別是AB、BC邊的中點,EP⊥CD于點P,∠BAD=110°,則∠FPC的度數(shù)是( 。
A. 35° B. 45° C. 50° D. 55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,我們把橫、縱坐標均為整數(shù)的點叫做整點.已知反比例函數(shù)y=(m<0)與y=x2﹣4在第四象限內(nèi)圍成的封閉圖形(包括邊界)內(nèi)的整點的個數(shù)為2,則實數(shù)m的取值范圍為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:我們學(xué)習(xí)等邊三角形時得到直角三角形的一個性質(zhì):在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.即:如圖1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,則:AC=AB.
探究結(jié)論:小明同學(xué)對以上結(jié)論作了進一步研究.
(1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結(jié)論:①△ACE為等邊三角形;②BE與CE之間的數(shù)量關(guān)系為 .
(2)如圖2,點D是邊CB上任意一點,連接AD,作等邊△ADE,且點E在∠ACB的內(nèi)部,連接BE.試探究線段BE與DE之間的數(shù)量關(guān)系,寫出你的猜想并加以證明.
(3)當(dāng)點D為邊CB延長線上任意一點時,在(2)條件的基礎(chǔ)上,線段BE與DE之間存在怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論 .
拓展應(yīng)用:如圖3,在平面直角坐標系xOy中,點A的坐標為(﹣,1),點B是x軸正半軸上的一動點,以AB為邊作等邊△ABC,當(dāng)C點在第一象限內(nèi),且B(2,0)時,求C點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,C,D分別為半徑OB,弦AB的中點,連接CD并延長,交過點A的切線于點E.
(1)求證:AE⊥CE.
(2)若AE=,sin∠ADE=,求⊙O半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中有三個點A(-3,2)、B(-4,-3)、C(-1,-1)
(1)連接A、B、C三點,請在右圖中作出△ABC關(guān)于x軸對稱的圖形△A/B/C/,并直接寫出對稱點A/,B/,C/的坐標;
(2)用直尺在縱軸上找到一點P(0,n)滿足PB/+PA的值最小(在圖中標明點P的位置,并寫出n的值在哪兩個連續(xù)整數(shù)之間).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AB、AD上各有一點P、Q,△APQ的周長為2,求∠PCQ.
為了解決這個問題,我們在正方形外以BC和AB延長線為邊作△CBE,使得△CBE≌△CDQ(如圖)
(1)△CBE可以看成由△CDQ怎樣運動變化得到的?
(2)圖中PQ與PE的長度有什么關(guān)系?為什么?
(3)請用(2)的結(jié)論證明△PCQ≌△PCE;
(4)根據(jù)以上三個問題的啟發(fā),求∠PCQ的度數(shù).
(5)對于題目中的點Q,若Q恰好是AD的中點,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D.
(1)求頂點D的坐標(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點P、M、N分別和點O、B、E對應(yīng)),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;
③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com