30、如圖,等邊△ABC中,E,D在AB,AC上,且EB=AD,BD與EC交于點(diǎn)F,則∠DFC=
60
度.
分析:先根據(jù)SAS判定△ABD≌△BCE得出全等三角形的對(duì)應(yīng)角相等,再根據(jù)角之間的關(guān)系得出∠DFC=60°.
解答:解:∵△ABC為等邊三角形
∴∠ABC=∠A,AB=BC
∵EB=AD
∴△ABD≌△BCE(SAS)
∴∠ABD=∠BCE,∠ADB=∠BEC
∵∠DFC=∠ECB+∠CBF=∠ABD+∠CBF=60°.
故填60°.
點(diǎn)評(píng):此題主要考查了等邊三角形的性質(zhì)及全等三角形的判定,做題要靈活運(yùn)用做到真正掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊△ABC中,AD是∠BAC的角平分線,E為AD上一點(diǎn),以BE為一邊且在BE下方作等邊△BEF,連接CF.
(1)求證:AE=CF;
(2)G為CF延長線上一點(diǎn),連接BG.若BG=5,BC=8,求CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊△ABC中,D、E、F分別是各邊上的一點(diǎn),且AD=BE=CF.
求證:△DEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊△ABC中,D是BC上一點(diǎn),以AD為邊作等腰△ADE,使AD=AE,∠DAE=80°,DE交AC于點(diǎn)F,∠BAD=15°,求∠FDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊△ABC中,AD=CE,BD和AE相交于F,BG⊥AE垂足為G,求∠FBG的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案