【題目】拋物線y=﹣2(x﹣1)2+3的頂點(diǎn)坐標(biāo)是( )
A.(﹣1,3)
B.(1,3)
C.(1,﹣3)
D.(﹣1,﹣3)

【答案】B
【解析】 解:∵拋物線的解析式為:y=﹣2(x﹣1)2+3,
∴其頂點(diǎn)坐標(biāo)為(1,3).
故選B.
【考點(diǎn)精析】利用二次函數(shù)的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=DC=5,點(diǎn)P在BC上移動(dòng),則當(dāng)PA+PD取最小值時(shí),BP長為( )

A.1
B.2
C.2.5
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是( 。

A. a3+a3a6B. a6÷a3a2C. a23a8D. a2a3a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形的一邊長是3.6cm,兩條對(duì)角線的夾角為60°,則矩形對(duì)角線長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小惠在紙上畫了一條數(shù)軸后,折疊紙面,使數(shù)軸上表示1的點(diǎn)與表示﹣3的點(diǎn)重合,若數(shù)軸上A,B兩點(diǎn)之間的距離為2014(A在B的左側(cè)),且A,B兩點(diǎn)經(jīng)上述折疊后重合,則A點(diǎn)表示的數(shù)為(
A.﹣1006
B.﹣1007
C.﹣1008
D.﹣1009

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC是直角三角形,ACB=90,AC=BC,OA=1,OC=4,拋物線y=+bx+c經(jīng)過A,B兩點(diǎn),拋物線的頂點(diǎn)為D.

(1)、求b,c的值;

(2)、點(diǎn)E是直角三角形ABC斜邊AB上一動(dòng)點(diǎn)(點(diǎn)A、B除外),過點(diǎn)E作x軸的垂線交拋物線于點(diǎn)F,當(dāng)線段EF的長度最大時(shí),求點(diǎn)E的坐標(biāo);

(3)、在(2)的條件下:求以點(diǎn)E、B、F、D為頂點(diǎn)的四邊形的面積;在拋物線上是否存在一點(diǎn)P,使EFP是以EF為直角邊的直角三角形? 若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBE是高,ABE=45°,點(diǎn)FAB的中點(diǎn),ADFE、BE分別交于點(diǎn)G、H,CBE=BAD.有下列結(jié)論:FD=FEAH=2CD;BCAD=AE2;④∠DFE=2DAC ;若連接CH,則CHEF.其中正確的個(gè)數(shù)為(

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行.從內(nèi)到外,它們的邊長依次為2,4,6,8,…,頂點(diǎn)依次用A1 , A2 , A3 , A4 , …表示,則頂點(diǎn)A55的坐標(biāo)是( )

A.(13,13)
B.(﹣13,﹣13)
C.(14,14)
D.(﹣14,﹣14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),且與x軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(2,1).

1)求mk的值;

2)求點(diǎn)C的坐標(biāo),并結(jié)合圖象寫出不等式組0x+m的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案