【題目】如圖,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于點(diǎn)M,交BE于點(diǎn)G,AD平分∠MAC,交BC于點(diǎn)D,交BE于點(diǎn)F.
(1)判斷直線(xiàn)BE與線(xiàn)段AD之間的關(guān)系,并說(shuō)明理由;
(2)若∠C=30°,圖中是否存在等邊三角形?若存在,請(qǐng)寫(xiě)出來(lái)并證明;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)BE垂直平分AD,理由見(jiàn)解析;(2)存在,△ABD、△GAE是等邊三角形.
【解析】
(1)根據(jù)余角的性質(zhì)即可得到∠5=∠C;由AD平分∠MAC,得到∠3=∠4,根據(jù)三角形的外角的性質(zhì)得到∠BAD=∠ADB,推出△BAD是等腰三角形,于是得到結(jié)論.
(2)根據(jù)∠5=∠C=30°,AM⊥BC,可得∠ABD=60°,∠CAM=60°,進(jìn)而得到∠ADB=∠4+∠C=60°,∠BAD=60°,依據(jù)∠ABD=∠BDA=∠BAD,可得△ABD是等邊三角形;根據(jù)∠AEG=∠AGE=∠GAE,即可得到△AEG是等邊三角形.
解:(1)BE垂直平分AD,理由:
∵AM⊥BC,
∴∠ABC+∠5=90°,
∵∠BAC=90°,
∴∠ABC+∠C=90°,
∴∠5=∠C;
∵AD平分∠MAC,
∴∠3=∠4,
∵∠BAD=∠5+∠3,∠ADB=∠C+∠4,∠5=∠C,
∴∠BAD=∠ADB,
∴△BAD是等腰三角形,
又∵∠1=∠2,
∴BE垂直平分AD;
(2)△ABD、△GAE是等邊三角形.理由:
∵∠5=∠C=30°,AM⊥BC,
∴∠ABD=60°,
∵∠BAC=90°,
∴∠CAM=60°,
∵AD平分∠CAM,
∴∠4=∠CAM=30°,
∴∠ADB=∠4+∠C=60°,
∴∠BAD=60°,
∴∠ABD=∠BDA=∠BAD,
∴△ABD是等邊三角形;
∵在Rt△BGM中,∠BGM=60°=∠AGE,
在Rt△ACM中,∠CAM=60°,
∴∠AEG=∠AGE=∠GAE,
∴△AEG是等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一直線(xiàn)與兩坐標(biāo)軸的正半軸分別交于A,B兩點(diǎn),P是線(xiàn)段AB上任意一點(diǎn)(不包括端點(diǎn)),過(guò)P分別作兩坐標(biāo)軸的垂線(xiàn)與兩坐標(biāo)軸圍成的矩形的周長(zhǎng)為10,則該直線(xiàn)的函數(shù)表達(dá)式是( )
A.y=x+5
B.y=x+10
C.y=﹣x+5
D.y=﹣x+10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四點(diǎn)A,B,C,D,用圓規(guī)和無(wú)刻度的直尺按下列要求與步驟畫(huà)出圖形并計(jì)算:
(1)畫(huà)直線(xiàn)AB;
(2)畫(huà)射線(xiàn)DC;
(3)延長(zhǎng)線(xiàn)段DA至點(diǎn)E,使AE=AB;(保留作圖痕跡)
(4)畫(huà)一點(diǎn)P,使點(diǎn)P既在直線(xiàn)AB上,又在線(xiàn)段CE上;
(5)若AB=2cm,AD=1cm,求線(xiàn)段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,B兩地相距80km,甲、乙兩人騎車(chē)分別從A,B兩地同時(shí)相向而行,他們都保持勻速行駛.如圖,l1,l2分別表示甲、乙兩人離B地的距離y(km)與騎車(chē)時(shí)間x(h)的函數(shù)關(guān)系.根據(jù)圖象得出的下列結(jié)論,正確的個(gè)數(shù)是( 。
①甲騎車(chē)速度為30km/小時(shí),乙的速度為20km/小時(shí);
②l1的函數(shù)表達(dá)式為y=80﹣30x;
③l2的函數(shù)表達(dá)式為y=20x;
④小時(shí)后兩人相遇.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某港口P位于東西方向的海岸線(xiàn)上,A、B兩艘輪船同時(shí)從港口P出發(fā),各自沿一固定方向航行,A輪船每小時(shí)航行12海里,B輪船每小時(shí)航行16海里.它們離開(kāi)港口一個(gè)半小時(shí)后分別位于點(diǎn)R、Q處,且相距30海里.已知B輪船沿北偏東60°方向航行.
(1)A輪船沿哪個(gè)方向航行?請(qǐng)說(shuō)明理由;
(2)請(qǐng)求出此時(shí)A輪船到海岸線(xiàn)的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某一廣告墻PQ旁有兩根直立的木桿AB和CD , 某一時(shí)刻在太陽(yáng)光下,木桿CD的影子剛好不落在廣告墻PQ上,
(1)你在圖中畫(huà)出此時(shí)的太陽(yáng)光線(xiàn)CE及木桿AB的影子BF;
(2)若AB=6米,CD=3米 , CD到PQ的距離DQ的長(zhǎng)為4米,求此時(shí)木桿AB的影長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形 ABCD 中,點(diǎn) E 是對(duì)角線(xiàn) BD 上一動(dòng)點(diǎn),AE 的延長(zhǎng)線(xiàn)交 CD 于點(diǎn) F,交 BC 的延長(zhǎng)線(xiàn)于點(diǎn) G,M 是 FG 的中點(diǎn).
(1)求證: ∠DAE=∠DCE;
(2)判斷線(xiàn)段 CE 與 CM 的位置關(guān)系,并證明你的結(jié)論;
(3)當(dāng),并且恰好是等腰三角形時(shí),求 DE 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)實(shí)數(shù)a,b,c滿(mǎn)足a>b>c(ac<0),且|c|<|b|<|a|,則|x-a|+|x+b|+|x-c|的最小值為( )
A. B. |b| C. a+b D. -c-a
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小東用長(zhǎng)為3.2m的竹竿做測(cè)量工具測(cè)量學(xué)校旗桿的高度,移動(dòng)竹竿,使竹竿、旗桿頂端的影子恰好落在地面的同一點(diǎn).此時(shí),竹竿與這一點(diǎn)相距8m,與旗桿相距22m,則旗桿的高為( )
A.12m
B.10m
C.8m
D.7m
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com