【題目】如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為對角線OB的中點,點E(4,n)在邊AB上,反比例函數(shù)(k≠0)在第一象限內(nèi)的圖象經(jīng)過點D、E,且tan∠BOA=

(1)求邊AB的長;

(2)求反比例函數(shù)的解析式和n的值;

(3)若反比例函數(shù)的圖象與矩形的邊BC交于點F,將矩形折疊,使點O與點F重合,折痕分別與x、y軸正半軸交于點H、G,求線段OG的長.

【答案】(1)2

y=,n=;

OG=

【解析】(1)∵點E(4,n)在邊AB上,

∴OA=4,

在Rt△AOB中,∵tan∠BOA=,

∴AB=OA×tan∠BOA=4×=2;

(2)根據(jù)(1),可得點B的坐標為(4,2),

∵點D為OB的中點,

∴點D(2,1)

=1,

解得k=2,

∴反比例函數(shù)解析式為y=,

又∵點E(4,n)在反比例函數(shù)圖象上,

=n,

解得n=

(3)如圖,設點F(a,2),

∵反比例函數(shù)的圖象與矩形的邊BC交于點F,

=2,

解得a=1,

∴CF=1,

連接FG,設OG=t,則OG=FG=t,CG=2﹣t,

在Rt△CGF中,GF2=CF2+CG2,

即t2=(2﹣t)2+12,

解得t=,

∴OG=t=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC繞點A旋轉(zhuǎn)至△ADE的位置,使點E落在BC邊上,則對于結論:①DEBC;②∠EAC=∠DAB;③EA平分∠DEC;④若DEAC,則∠DEB60°;其中正確結論的個數(shù)是( )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】成都市空氣質(zhì)量整治領導小組近期提出保護好環(huán)境,拒絕冒黑煙.某公交公司將淘汰某一條線路上冒黑煙較嚴重的公交車,計劃購買型和型兩種環(huán)保節(jié)能的公交車10輛.若購買型公交車1輛,型公交車2輛,共需400萬元;若購買型公交車2輛,型公交車1輛,共需350萬元.

1)求購買型和型公交車每輛各需多少萬元?

2)預計在該線路上型和型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買型和型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關系,其部分圖象如圖所示.

(1)求y關于x的函數(shù)關系式;(不需要寫定義域)

(2)已知當油箱中的剩余油量為8升時,該汽車會開始提示加油,在此次行駛過程中,行駛了500千米時,司機發(fā)現(xiàn)離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時離加油站的路程是多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時)與所用時間t(小時)的函數(shù)關系如圖所示,其中60≤v≤120.

(1)直接寫出vt的函數(shù)關系式;

(2)若一輛貨車同時從乙地出發(fā)前往甲地,客車比貨車平均每小時多行駛20千米,3小時后兩車相遇.

①求兩車的平均速度;

②甲、乙兩地間有兩個加油站A、B,它們相距200千米,當客車進入B加油站時,貨車恰好進入A加油站(兩車加油的時間忽略不計),求甲地與B加油站的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC和△ADE中,∠BAC=∠EAD,ABACADAE,連接CD、AE交于點F

1)求證:BECD

2)當∠BAC=∠EAD30°,ADAB時(如圖2),延長DC、AB交于點G,請直接寫出圖中除△ABC、△ADE以外的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過點(2,1)和(0,﹣2).

1)求出該函數(shù)圖象與x軸的交點坐標;

2)判斷點(﹣46)是否在該函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知,,是線段上的一個動點,作直線,過點軸于點,若,設點在直線上,則為(

A.2B.C.3D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的切線,切點為B,OA交⊙O于點C,且AC=OC.

(1)求弧BC的度數(shù);

(2)設⊙O的半徑為5,求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案