【題目】如圖,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC交AC延長線于M,連接CD,下列四個結(jié)論:①∠ADC=45°;②BD=AE;③AC+CE=AB;④AB-BC=2MC,其中正確的有( )個.
A. 1B. 2C. 3D. 4
【答案】D
【解析】
過E作EQ⊥AB于Q,作∠ACN=∠BCD,交AD于N,過D作DH⊥AB于H,根據(jù)角平分線性質(zhì)求出CE=EQ,DM=DH,根據(jù)勾股定理求出AC=AQ,AM=AH,根據(jù)等腰三角形的性質(zhì)和判定求出BQ=QE,即可求出③;根據(jù)三角形外角性質(zhì)求出∠CND=45°,證△ACN≌△BCD,推出CD=CN,即可求出②①;證△DCM≌△DBH,得到CM=BH,AM=AH,即可求出④.
解:過E作EQ⊥AB于Q,
∵∠ACB=90°,AE平分∠CAB,
∴CE=EQ,
∵∠ACB=90°,AC=BC,
∴∠CBA=∠CAB=45°,
∵EQ⊥AB,
∴∠EQA=∠EQB=90°,
由勾股定理得:AC=AQ,
∴∠QEB=45°=∠CBA,
∴EQ=BQ,
∴AB=AQ+BQ=AC+CE,
∴③正確;
作∠ACN=∠BCD,交AD于N,
∵∠CAD=∠CAB=22.5°=∠BAD,
∴∠ABD=90°-22.5°=67.5°,
∴∠DBC=67.5°-45°=22.5°=∠CAD,
∴∠DBC=∠CAD,
∵AC=BC,∠ACN=∠DCB,
∴△ACN≌△BCD,
∴CN=CD,AN=BD,
∵∠ACN+∠NCE=90°,
∴∠NCB+∠BCD=90°,
∴∠CND=∠CDA=45°,
∴∠ACN=45°-22.5°=22.5°=∠CAN,
∴AN=CN,
∴∠NCE=∠AEC=67.5°,
∴CN=NE,
∴CD=AN=EN=AE,
∵AN=BD,
∴BD=AE,
∴①正確,②正確;
過D作DH⊥AB于H,
∵∠MCD=∠CAD+∠CDA=67.5°,
∠DBA=90°-∠DAB=67.5°,
∴∠MCD=∠DBA,
∵AE平分∠CAB,DM⊥AC,DH⊥AB,
∴DM=DH,
在△DCM和△DBH中
∠M=∠DHB=90°,∠MCD=∠DBA,DM=DH,
∴△DCM≌△DBH,
∴BH=CM,
由勾股定理得:AM=AH,
∴AC+AB=2AM,
AC+AB=2AC+2CM,
AB-AC=2CM,
∵AC=CB,
∴AB-CB=2CM,
∴④正確.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐上,且點A(0,2),點C(,0),如圖所示:拋物線經(jīng)過點B。
(1)求點B的坐標(biāo);
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了獎勵學(xué)習(xí)進(jìn)步的同學(xué),某班準(zhǔn)備購買甲、乙、丙三種不同的筆記本作為獎品,其單價分別為2元、3元、4元,購買這些筆記本需要花60元;經(jīng)過協(xié)商,每種筆記本單價下降0.5元,只花了49元,那么以下哪個結(jié)論是正確的( 。
A. 乙種筆記本比甲種筆記本少4本
B. 甲種筆記本比丙種筆記本多6本
C. 乙種筆記本比丙種筆記本多8本
D. 甲種筆記本與乙種筆記本共12本
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在新羅區(qū)中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要5.5萬元,購買2臺電腦和1臺電子白板需要5萬元.
(1)求每臺電腦、每臺電子白板各多少萬元?
(2)根據(jù)學(xué)校實際,需購進(jìn)電腦和電子白板共30臺,總費(fèi)用不超過50萬元,則最多能購買電子白板多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點C'處,連接C'D交AB于點E,連接BC',當(dāng)△BC'D是直角三角形時,DE的長為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有A,B,C三種款式的帽子,E,F二種款式的圍巾,穿戴時小婷任意選一頂帽子和一條圍巾.
(1)用合適的方法表示搭配的所有可能性結(jié)果.
(2)求小婷恰好選中她所喜歡的A款帽子和E款圍巾的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空或填寫理由.
(1)如圖甲,∵∠ =∠ (已知);
∴AB∥CD( )
(2)如圖乙,已知直線a∥b,∠3=80°,求∠1,∠2的度數(shù).
解:∵a∥b,( )
∴∠1=∠4( )
又∵∠3=∠4( )
∠3=80°(已知)
∴∠1=( )(等量代換)
又∵∠2+∠3=180°
∴∠2=( )(等式的性質(zhì))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com