【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過點OOFBCF,若BD=8cm,AE=2cm,

(1)求⊙O的半徑;

(2)O到弦BC的距離.

【答案】(1)5;(2).

【解析】

(1)連結(jié)OB,設(shè)半徑為r,則OE=r-2,運用垂徑定理和勾股定理即可求解;

(2)利用SBCOBCOFOCBE即可求解.

(1)連結(jié)OB,設(shè)半徑為r,則OE=r2,

ACO的直徑,弦BDAOE ,BD=8cm

BEDE4 ,

在RtOBEOE2+BE2=OB2

(r2)242r2

r=5;

2)∵r5,

AC10,EC8

BC=4;

OFBC

SBCOBCOF OCBE

4OF 4

OF .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2+(2m+1)x+m20有兩個根x1,x2.

(1)m的取值范圍.

(2)x12+x1x20時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一個小球從斜坡的點O處拋出,小球的拋出路線可以用二次函數(shù)y=4x﹣x2刻畫,斜坡可以用一次函數(shù)y=x刻畫,下列結(jié)論錯誤的是( 。

A. 當小球拋出高度達到7.5m時,小球水平距O點水平距離為3m

B. 小球距O點水平距離超過4米呈下降趨勢

C. 小球落地點距O點水平距離為7

D. 斜坡的坡度為1:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)yx22x+k的部分圖象如圖所示,則關(guān)于x的一元二次方程x22x+k0的解一個為x13,則方程x22x+k0另一個解x2_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為了吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,如圖所示,并規(guī)定:顧客消費200元(含200元)以上,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,如果轉(zhuǎn)盤停止后,指針正好對準九折、八折、七折區(qū)域,顧客就可以獲得此項優(yōu)惠,如果指針恰好在分割線上時,則需重新轉(zhuǎn)動轉(zhuǎn)盤.

1)某顧客正好消費220元,他轉(zhuǎn)一次轉(zhuǎn)盤,他獲得九折、八折、七折優(yōu)惠的概率分別是多少?

2)某顧客消費中獲得了轉(zhuǎn)動一次轉(zhuǎn)盤的機會,實際付費168元,請問他消費所購物品的原價應(yīng)為多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖乙,是有公共頂點的等腰直角三角形,,點P為射線BD,CE的交點.

如圖甲,將繞點A旋轉(zhuǎn),當C、D、E在同一條直線上時,連接BD、BE,則下列給出的四個結(jié)論中,其中正確的是______.

,,把繞點A旋轉(zhuǎn),

時,求PB的長;

求旋轉(zhuǎn)過程中線段PB長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船在A處測得燈塔P在船的北偏東30°方向,輪船沿著北偏東60°方向航行16km后到達B處,這時燈塔P在船的北偏西75°方向.則燈塔PB之間的距離等于___________km(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山西省第十五屆運動會乒乓球比賽于2018813日上午在山西省體育博物館的比賽場館內(nèi)正式拉開了帷幕.第十五屆運動會競技體育組乒乓球項目產(chǎn)生的決賽運動員名單中太原市共27人,其中甲組有甲、乙、丙、丁四名女子運動員,若進行一次乒乓球單打比賽,要通過抽簽從中選出兩名運動員打第一場比賽.

1)若已確定甲打第一場,再從其余三名運動員中隨機選取一位,求恰好選中乙的概率;

2)若兩名運動員都不確定,請用樹狀圖法或列表法,求恰好選中甲、乙兩名運動員的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線x軸、y軸分別交于點A,B,與雙曲線分別交于點C,D,且點C的坐標為.

1)分別求出直線、雙曲線的函數(shù)表達式.

2)求出點D的坐標.

3)利用圖象直接寫出:當x在什么范圍內(nèi)取值時

查看答案和解析>>

同步練習(xí)冊答案