【題目】隨著科技的進(jìn)步和網(wǎng)絡(luò)資源的豐富,在線(xiàn)學(xué)習(xí)已成為更多人的自主學(xué)習(xí)選擇.某校計(jì)劃為學(xué)生提供以下四類(lèi)在線(xiàn)學(xué)習(xí)方式:在線(xiàn)閱讀、在線(xiàn)聽(tīng)課、在線(xiàn)答題和在線(xiàn)討論.為了解學(xué)生需求,該校隨機(jī)對(duì)本校部分學(xué)生進(jìn)行了你對(duì)哪類(lèi)在線(xiàn)學(xué)習(xí)方式最感興趣的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)圖中信息,解答下列問(wèn)題:

1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

2)求扇形統(tǒng)計(jì)圖中在線(xiàn)討論對(duì)應(yīng)的扇形圓心角的度數(shù);

3)該校共有學(xué)生人,請(qǐng)你估計(jì)該校對(duì)在線(xiàn)閱讀最感興趣的學(xué)生人數(shù).

【答案】1人,補(bǔ)全條形統(tǒng)計(jì)圖見(jiàn)解析;.2;(3.

【解析】

1)根據(jù)在線(xiàn)答題的人數(shù)與占比即可求出本次調(diào)查的學(xué)生總?cè)藬?shù),即可計(jì)算補(bǔ)全統(tǒng)計(jì)圖;

2)先求出在線(xiàn)討論的占比再乘以360°即可求解;

3)根據(jù)在線(xiàn)閱讀的占比乘以全校人數(shù)即可求解.

1)總?cè)藬?shù)=(人),如圖

2)在線(xiàn)討論所占圓心角

3)本校對(duì)在線(xiàn)閱讀最感興趣的人(人)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖①,AD是△ABC的中線(xiàn).△ABD與△ACD的面積有怎樣的數(shù)量關(guān)系?為什么?

(2)若三角形的面積記為S,例如:△ABC的面積記為SABC.如圖②,已知SABC1.△ABC的中線(xiàn)AD、CE相交于點(diǎn)O,求四邊形BDOE的面積.

小華利用(1)的結(jié)論,解決了上述問(wèn)題,解法如下:

連接BO,設(shè)SBEOx,SBDOy,由(1)結(jié)論可得:SBCESBADSABC,SBCO2SBDO2y,SBAO2SBEO2x.則有所以xy.即四邊形BDOE面積為

請(qǐng)仿照上面的方法,解決下列問(wèn)題:

①如圖③,已知SABC1D、EBC邊上的三等分點(diǎn),FGAB邊上的三等分點(diǎn),ADCF交于點(diǎn)O,求四邊形BDOF的面積.

②如圖④,已知SABC1DE、FBC邊上的四等分點(diǎn),GHIAB邊上的四等分點(diǎn),AD、CG交于點(diǎn)O,則四邊形BDOG的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知Rt△ABC,∠C=90°,AB=10,且cosA=. M為線(xiàn)段AB的中點(diǎn), 作DM⊥AB交AC于D. 點(diǎn)Q在線(xiàn)段AC上,點(diǎn)P在線(xiàn)段BC上,以PQ為直徑的圓始終過(guò)點(diǎn)M, 且PQ交線(xiàn)段DM于點(diǎn)E.

⑴ 試說(shuō)明△AMQ∽△PME;

⑵ 當(dāng)△PME是等腰三角形時(shí),求出線(xiàn)段AQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】求下列函數(shù)的圖象的對(duì)稱(chēng)軸、頂點(diǎn)坐標(biāo)及與x軸的交點(diǎn)坐標(biāo).

(1)y=4x2+24x+35;

(2)y=-3x2+6x+2;

(3)y=x2-x+3;

(4)y=2x2+12x+18.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系上有點(diǎn)A(1,0),點(diǎn)A第一次跳動(dòng)至點(diǎn),第二次點(diǎn)跳動(dòng)至點(diǎn)第三次點(diǎn)跳動(dòng)至點(diǎn),第四次點(diǎn)跳動(dòng)至點(diǎn)……,依此規(guī)律跳動(dòng)下去,則點(diǎn)與點(diǎn)之間的距離是(

A. 2017B. 2018C. 2019D. 2020

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新定義:我們把兩個(gè)面積相等但不全等的三角形叫做偏等積三角形.

1)初步嘗試:如圖1,已知等腰直角ABC,∠ACB=90°,請(qǐng)用直尺和圓規(guī)將它分成兩個(gè)三角形,使它們成為偏等積三角形,請(qǐng)保留作圖痕跡.

2)理解運(yùn)用:請(qǐng)?jiān)趫D2的方格紙中,畫(huà)兩個(gè)面積為2的三角形,使這兩個(gè)三角形是偏等積三角形.

3)綜合應(yīng)用:如圖3,已知ACD為直角三角形,∠ADC=90°,以AC,AD為腰向外作等腰直角三角形ABC和等腰直角三角形ADE,∠CAB=DAE=90°,連結(jié)BE,求證:ACDABE為偏等積三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一面靠墻的空地上用長(zhǎng)為24 m的籬笆圍成中間隔有二道籬笆的長(zhǎng)方形花圃.設(shè)花圃的寬AB為x m,面積為S m2.

(1)求S與x的函數(shù)關(guān)系式及自變量的取值范圍;

(2)已知墻的最大可用長(zhǎng)度為8 m,

①求所圍成花圃的最大面積;

②若所圍花圃的面積不小于20 m2,請(qǐng)直接寫(xiě)出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖像與軸、軸交于、兩點(diǎn),軸正半軸上的一個(gè)動(dòng)點(diǎn),連接,將沿翻折,點(diǎn)恰好落在上,則點(diǎn)的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABC中,∠ABC和∠ACB的角平分線(xiàn)交于O,且∠ABC的角平分線(xiàn)與∠ACB的外角平分線(xiàn)交于P,∠OPC和∠OCP角平分線(xiàn)交于H,∠H=117.5°,則∠A=________

查看答案和解析>>

同步練習(xí)冊(cè)答案