【題目】根據(jù)所學(xué)知識填空.
(1)如圖①,△ABE,△ACD都是等邊三角形,若CE=6,則BD的長=;
(2)如圖②,△ABC中,∠ABC=30°,AB=3,BC=4,D是△ABC外一點,且△ACD是等邊三角形,則BD的長=

【答案】
(1)6
(2)5
【解析】(1)解:∵△ABE和△ACD是等邊三角形, ∴BE=AE=AB=3,AD=AC,∠ABE=∠EAB=∠DAC=60°,
∴∠EAB+∠BAC=∠DAC+∠CAB,
∴∠BAD=∠EAC,
在△ACE和△ADB中, ,
∴△ACE≌△ADB(SAS),
∴BD=CE=6;
所以答案是:6;
(2.)作等邊三角形ABE,連接AE,如圖所示:

則AE=AB=3,∠ABE=60°,
∵∠ABC=30°,
∴∠CBE=∠ABE+∠ABC=90°,
∴CE= = =5,
由(1)得:BD=CE=5;
所以答案是:5.
【考點精析】本題主要考查了等邊三角形的性質(zhì)的相關(guān)知識點,需要掌握等邊三角形的三個角都相等并且每個角都是60°才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A的坐標(biāo)為(4,0),點B的坐標(biāo)為(0,4),點M是線段AB上任意一點(A,B兩點除外)。

(1)求直線AB的解析式;

(2)過點M分別作MC⊥OA于點C,MD⊥OB于點D,當(dāng)點M在AB上運動時,你認(rèn)為四邊形OCMD的周長是否發(fā)生變化?并說明理由;

(3)當(dāng)點M把線段AB分成的兩部分的比為1:3時,請求出點M的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:(x+32x+3=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,弦AB=CD,ABCD于點E,且AEEB,CEED,連結(jié)AO,DO,BD

(1)求證:EB=ED

(2)若AO=6,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC∽△ABC′,相似比為12,ABCABC的面積的比為(

A.12B.21C.14D.41

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中E是BC上的一點,EC=2BE,點D是AC的中點,設(shè)△ABC,△ADF,△BEF的面積分別為SABC , SADF , SBEF , 且SABC=12,則SADF﹣SBEF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知(x+3)2與|y﹣2|互為相反數(shù),z是絕對值最小的有理數(shù),求(x+y)y+xyz的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=6,CB=8,點P與點Q分別是AB、CB邊上的動點,點P與點Q同時出發(fā),點P以每秒2個單位長度的速度從點A→點B運動,點Q以每秒1個單位長度的速度從點C→點B運動.當(dāng)其中一個點到達(dá)終點時,另一個點隨之停止運動.(設(shè)運動時間為t秒)
(1)如果存在某一時刻恰好使QB=2PB,求出此時t的值;
(2)在(1)的條件下,求圖中陰影部分的面積(結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,△ABC各頂點都在格點上,點A,C的坐標(biāo)分別為(﹣5,1)、(﹣1,4),結(jié)合所給的平面直角坐標(biāo)系解答下列問題:

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)畫出△ABC關(guān)于原點O對稱的△A2B2C2;
(3)點C1的坐標(biāo)是;點C2的坐標(biāo)是;△ABC的面積是

查看答案和解析>>

同步練習(xí)冊答案