如圖,在△ABC中,AB=3,BC=,∠B=45°,在BC邊上有一動(dòng)點(diǎn)M,過(guò)M作MN∥AC,交AB于點(diǎn)N,連接AM,設(shè)CM=x(0<x< ),△AMN的面積為S.
(1)求S與x之間的函數(shù)關(guān)系式;
(2)是否存在點(diǎn)M,使△AMN的面積等于4?若存在,求出CM的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)連接CN.MN平行AC,根據(jù)等底等高的三角形面積相等可得到S△CMN=S△AMN,利用相似三角形的性質(zhì)可得到BN的長(zhǎng),作NH垂直BM于H,解直角三角形BNH可求出NH的長(zhǎng),繼而求出S與x之間的函數(shù)關(guān)系式;
(2)不存在點(diǎn)M,使△AMN的面積等于4,設(shè)三角形AMN的面積為4,由(1)的函數(shù)關(guān)系可得一元二次方程無(wú)解,所以假設(shè)不成立.
解答:解:(1)連接CN.
∵M(jìn)N∥AC,
∴S△CMN=S△AMN,
∵CM=x,則BM=2-x,
∴△BMN∽BCA,
,
,
∴BN=,
作NH垂直BM于H,
∵∠B=45度,
∴NH=BN=,
∴S=CM•NH;

(2)令S△AMN=4,即4=,
判別式b2-4ac<0,方程無(wú)解.
故不存在點(diǎn)M,使△AMN的面積等于4.
點(diǎn)評(píng):本題考查了相似三角形的判定、解直角三角形的有關(guān)知識(shí)、三角形的面積公式運(yùn)用以及一元二次方程解的存在性問(wèn)題,題目的綜合性強(qiáng),計(jì)算量大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線(xiàn),畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線(xiàn)分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案