【題目】如圖,矩形ABCD中,BC=2AB,對(duì)角線相交于O,過(guò)C點(diǎn)作CE⊥BD交BD于E點(diǎn),H為BC中點(diǎn),連接AH交BD于G點(diǎn),交EC的延長(zhǎng)線于F點(diǎn),下列5個(gè)結(jié)論:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四邊形GHCE , ⑤CF=BD.正確的有( )個(gè).
A.1
B.2
C.3
D.4
【答案】C
【解析】解:①在△BCE中,∵CE⊥BD,H為BC中點(diǎn), ∴BC=2EH,又BC=2AB,
∴EH=AB,①正確;
②由①可知,BH=HE∴∠EBH=∠BEH,
又∠ABG+∠EBH=∠BEH+∠HEC=90°,
∴∠ABG=∠HEC,②正確;
③由AB=BH,∠ABH=90°,得∠BAG=45°,
同理:∠DHC=45°,∴∠EHC>∠DHC=45°,
∴△ABG≌△HEC,③錯(cuò)誤;
④作AM⊥BD,則AM=CE,△AMD≌△CEB,
∵AD∥BC,
∴△ADG∽△HGB,
∴ =2,
即△ABG的面積等于△BGH的面積的2倍,
根據(jù)已知不能推出△AMG的面積等于△ABG的面積的一半,
即S△GAD≠S四邊形GHCE ,
∴④錯(cuò)誤
⑤∠ECH=∠CHF+∠F=45°+∠F,
又∠ECH=∠CDE=∠BAO,∠BAO=∠BAH+∠HAC,
∴∠F=∠HAC,
∴CF=BD,⑤正確.
正確的有3個(gè).
故選C.
根據(jù)BC=2AB,H為BC中點(diǎn),可得△ABH為等腰直角三角形,HE=BH=HC,可得△CEH為等腰三角形,又∠BCD=90°,CE⊥BD,利用互余關(guān)系得出角的相等關(guān)系,根據(jù)基本圖形判斷全等三角形,特殊三角形進(jìn)行判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在邊長(zhǎng)為3a+2b的大正方形紙片中,剪掉邊長(zhǎng)2a+b的小正方形,得到圖②,把圖②陰影部分剪下,按照?qǐng)D③拼成一個(gè)長(zhǎng)方形紙片.
(1)求出拼成的長(zhǎng)方形紙片的長(zhǎng)和寬;
(2)把這個(gè)拼成的長(zhǎng)方形紙片的面積加上10a+6b后,就和另一個(gè)長(zhǎng)方形的面積相等.已知另一長(zhǎng)方形的長(zhǎng)為5a+3b,求它的寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若平行四邊形中有兩個(gè)內(nèi)角的度數(shù)比為1∶3,則其中較小的內(nèi)角是( )
A. 30° B. 45° C. 60° D. 75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AC,BD相交于點(diǎn)O,E為AB的中點(diǎn),DE⊥AB.
(1)求∠ABC的度數(shù);
(2)如果 ,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程3x2+2=6x化成一般形式后,二次項(xiàng)系數(shù)和一次項(xiàng)系數(shù)分別是( )
A. 3、-6B. 3、6C. 3、2D. 2、-6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P( x, y1)與Q (x, y2)分別是兩個(gè)函數(shù)圖象C1與C2上的任一點(diǎn). 當(dāng)a ≤ x ≤ b時(shí),有-1 ≤ y1 - y2 ≤ 1成立,則稱(chēng)這兩個(gè)函數(shù)在a ≤ x ≤ b上是“相鄰函數(shù)”,否則稱(chēng)它們?cè)?/span>a ≤ x ≤ b上是“非相鄰函數(shù)”.
例如,點(diǎn)P(x, y1)與Q (x, y2)分別是兩個(gè)函數(shù)y = 3x+1與y = 2x - 1圖象上的任一點(diǎn),當(dāng)-3 ≤ x ≤ -1時(shí),y1 - y2 = (3x + 1) - (2x - 1) = x + 2,通過(guò)構(gòu)造函數(shù)y = x + 2并研究該函數(shù)在-3 ≤ x ≤ -1上的性質(zhì),得到該函數(shù)值的范圍是-1 ≤ y ≤ 1,所以-1 ≤ y1 - y2 ≤ 1成立,因此這兩個(gè)函數(shù)在-3 ≤ x ≤ -1上是“相鄰函數(shù)”.
(1)判斷函數(shù)y = 3x + 2與y = 2x + 1在-2 ≤ x≤ 0上是否為“相鄰函數(shù)”,說(shuō)明理由;
(2)若函數(shù)y = x2 - x與y = x - a在0 ≤ x ≤ 2上是“相鄰函數(shù)”,求a的取值范圍;
(3)若函數(shù)y =與y =-2x + 4在1 ≤ x ≤ 2上是“相鄰函數(shù)”,直接寫(xiě)出a的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥DE,∠ABC=70,∠CDE=140,則∠BCD的值為( )
A.70
B.50
C.40
D.30
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,一次函數(shù)y=-2x與二次函數(shù)y=ax2+2ax+c的圖像交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與其對(duì)稱(chēng)軸交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)設(shè)二次函數(shù)圖像的頂點(diǎn)為D,點(diǎn)C與點(diǎn)D關(guān)于 x軸對(duì)稱(chēng),且△ACD的面積等于2.
① 求二次函數(shù)的解析式;
② 在該二次函數(shù)圖像的對(duì)稱(chēng)軸上求一點(diǎn)P(寫(xiě)出其坐標(biāo)),使△PBC與△ACD相似.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com