【題目】對于平面內(nèi)的點和點,給出如下定義:點為平面內(nèi)的一點,若點使得是以為頂角且小于90°的等腰三角形,則稱點是點關(guān)于點的銳角等腰點.如圖,點是點關(guān)于點的銳角等腰點.在平面直角坐標(biāo)系中,點是坐標(biāo)原點.

1)已知點,在點中,是點關(guān)于點的銳角等腰點的是___________

2)已知點,點在直線上,若點是點關(guān)于點的銳角等腰點,求實數(shù)的取值范圍.

3)點軸上的動點,,點是以為圓心,2為半徑的圓上一個動點,且滿足.直線軸和軸分別交于點,若線段上存在點關(guān)于點的銳角等腰點,請直接寫出的取值范圍.

【答案】1;(2;(3

【解析】

1)根據(jù)等腰銳角點的定義即得;

2)先確定極限位置:直線與圓相切于第四象限及直線過(0,3)時b的值,進(jìn)而確定范圍;

3)分類討論:E點和F點位于線段HK左側(cè);E點和F點位于線段HK右側(cè);利用一線三垂直模型及相似三角形的性質(zhì)確定極限位置t的值,進(jìn)而確定范圍.

1)∵點P是點關(guān)于點的銳角等腰點,

OA=OP=2

如下圖:

當(dāng)時,OP1=2,OP1OA,不成立;

當(dāng)時,過P2P2Mx

OM=1,P2M=

∴在中,

∴點是點關(guān)于點的銳角等腰點;

當(dāng)時,

∴點不是點關(guān)于點的銳角等腰點;

當(dāng)時,過P4P4Nx

ON=,P4N=

∴在中,,

∴點是點關(guān)于點的銳角等腰點.

∴點關(guān)于點的銳角等腰點有,

故答案為:

2)以O為圓心,OA=3為半徑作圓,當(dāng)直線與圓O相切與第四象限時,切點即為點關(guān)于點的銳角等腰點,如下圖點

由題意,得:OB=-b,OD=

∴在中,

解得:

如上圖:當(dāng)直線過點E時,,OEOA

∴要使在直線上存在點是點關(guān)于點的銳角等腰點,

綜上所述:時,直線上存在點是點關(guān)于點的銳角等腰點 .

3)如下圖:

當(dāng)在直線左側(cè),時,過

KO=4,KH=EH=4-t

EG=

∵要使線段上存在點關(guān)于點的銳角等腰點,則

當(dāng)E點和F點位于線段HK右側(cè)時,即:時,如下圖,過EEBEF,過BBMx軸,過點FFLx

當(dāng)時,

,

,

,

將點代入直線得:

解得:

∴當(dāng)時,線段上存在點關(guān)于點的銳角等腰點.

,即

綜上所述:時,線段上存在點關(guān)于點的銳角等腰點

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E,F分別在BCCD上,下列結(jié)論:①CE=CF;②BD=1+;③BE+DF=EF;④∠AEB=75°.其中正確的序號是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一組數(shù)據(jù),,,,的方差是1,那么數(shù),,的方差是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線My=-x2+2bx+c與直線ly=9x+14交于點A,其中點A的橫坐標(biāo)為-2

1)請用含有b的代數(shù)式表示c: ;

2)若點B在直線l上,且B的橫坐標(biāo)為-1,點C的坐標(biāo)為(b,5).

①若拋物線M還過點B,直接寫出該拋物線的解析式;

②若拋物線M與線段BC恰有一個交點,結(jié)合函數(shù)圖象,直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy,函數(shù)(x>0)的圖象與直線l1:交于點A,與直線l2x=k交于點B.直線l1l2交于點C

(1) 當(dāng)點A的橫坐標(biāo)為1時,則此時k的值為 _______;

(2) 橫、縱坐標(biāo)都是整數(shù)的點叫做整點 記函數(shù)(x>0) 的圖像在點AB之間的部分與線段AC,BC圍成的區(qū)域(不含邊界)W

①當(dāng)k=3時,結(jié)合函數(shù)圖像,則區(qū)域W內(nèi)的整點個數(shù)是_________;

②若區(qū)域W內(nèi)恰有1個整點,結(jié)合函數(shù)圖象,直接寫出k的取值范圍:___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,函數(shù)的圖象G經(jīng)過點,直線y軸交于點B,與圖象G交于點C.

1)求m的值.

2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記圖象G在點AC之間的部分與線段BA,BC圍成的區(qū)域(不含邊界)為W.

①當(dāng)直線l過點時,直接寫出區(qū)域W內(nèi)的整點個數(shù).

②若區(qū)域W內(nèi)的整點不少于4個,結(jié)合函數(shù)圖象,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校數(shù)學(xué)興趣小組的同學(xué)要測量建筑物的高度,如圖,建筑物前有一段坡度為的斜坡,小明同學(xué)站在斜坡上的點處,用測角儀測得建筑物屋頂的仰角為,接著小明又向下走了米,剛好到達(dá)坡底處,這時測到建筑物屋頂的仰角為,、、、、在同一平面內(nèi).若測角儀的高度米,則建筑物的高度約為( ).(精確到0.1米,參考數(shù)據(jù):,

A.38.6B.39.0C.40.0D.41.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,點A表示小明家,點B表示學(xué)校.小明媽媽騎車帶著小明去學(xué)校,到達(dá)C處時發(fā)現(xiàn)數(shù)學(xué)書沒帶,于是媽媽立即騎車原路回家拿書后再追趕小明,同時小明步行去學(xué)校,到達(dá)學(xué)校后等待媽媽.假設(shè)拿書時間忽略不計,小明和媽媽在整個運(yùn)動過程中分別保持勻速.媽媽從C處出發(fā)x分鐘時離C處的距離為y1米,小明離C處的距離為y2米,如圖②,折線O-D-E-F表示y1x的函數(shù)圖像;折線O-G-F表示y2x的函數(shù)圖像.

1)小明的速度為 m/min,圖②中a的值為

2)設(shè)媽媽從C處出發(fā)x分鐘時媽媽與小明之間的距離為y米.當(dāng)12x30時,求出yx的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體育老師為了解本校九年級女生1分鐘“仰臥起坐”體育測試項目的達(dá)標(biāo)情況,從該校九年級136名女生中,隨機(jī)抽取了20名女生,進(jìn)行了1分鐘仰臥起坐測試,獲得數(shù)據(jù)如下:

收集數(shù)據(jù):抽取20名女生的1分鐘仰臥起坐測試成績()如下:

 38 46 42 52 55 43 59 46 25 38

 35 45 51 48 57 49 47 53 58 49

1)整理、描述數(shù)據(jù):請你按如下分組整理、描述樣本數(shù)據(jù),把下列表格補(bǔ)充完整:

范圍

人數(shù)

(說明:每分鐘仰臥起坐個數(shù)達(dá)到49個及以上時在中考體育測試中可以得到滿分)

2)分析數(shù)據(jù):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、滿分率如下表所示:

平均數(shù)

中位數(shù)

滿分率

46.8

47.5

得出結(jié)論:①估計該校九年級女生在中考體育測試中1分鐘“仰臥起坐”項目可以得到滿分的人數(shù);

②該中心所在區(qū)縣的九年級女生的1分鐘“仰臥起坐”總體測試成績?nèi)缦拢?/span>

平均數(shù)

中位數(shù)

滿分率

45.3

49

請你結(jié)合該校樣本測試成績和該區(qū)縣總體測試成績,為該校九年級女生的1分鐘“仰臥起坐”達(dá)標(biāo)情況做一下評估.

查看答案和解析>>

同步練習(xí)冊答案