【題目】如圖,將反比例函數(shù)y=(k>0)的圖象向左平移2個單位長度后記為圖象c,c與y軸相交于點A,點P為x軸上一點,點A關(guān)于點P的對稱點B在圖象c上,以線段AB為邊作等邊△ABC,頂點C恰好在反比例函數(shù)y=﹣(x>0)的圖象上,則k=_____.
【答案】2.
【解析】
如圖,連接PC,過C作CH⊥x軸于H.利用相似三角形的性質(zhì)表示出點C的坐標(biāo),再利用待定系數(shù)法解決問題即可.
如圖,連接PC,過C作CH⊥x軸于H.
由題意A(0,),P(﹣2,0),B(﹣4,﹣),
∴△ABC是等邊三角形,PA=PB,
∴PC⊥AB,∠ACP=∠BCP=30°,
∴PC=PA,
∴∠APC=∠AOP=∠PHC=90°,
∴∠APO+∠CPH=90°,∠CPH+∠PCH=90°,
∴∠APO=∠PCH,
∴△AOP∽△PHC,
∴.
∴PH=k,CH=2,
∴OH=k﹣2,
∴C(k﹣2,﹣2),
∵點C在y=﹣上,
∴﹣2(k﹣2)=﹣k,
解得k=2,
故答案為2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于三角函數(shù)有如下的公式:
①cos(α+β)=cosαcosβ﹣sinαsinβ;sin(α+β)=sinαcosβ+cosαsinβ;
②tan(α+β)=.
③利用這些公式可以將一些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值,如tan105°=tan(45°+60°)=====.
根據(jù)上面的知識,你可以選擇適當(dāng)?shù)墓浇鉀Q下面的實際問題:
(1)求cos75°的值;
(2)如圖,直升機(jī)在一建筑物CD上方的點A處測得建筑物頂端點D的俯角α為60°,底端點C的俯角β為75°,此時直升機(jī)與建筑物CD的水平距離BC為42m,求建筑物CD的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+1的圖象與二次函數(shù)y=x2+bx+c的圖象交于A,B兩點,點A在x軸上.點B的橫坐標(biāo)為4.
(1)b= ,c= ;
(2)設(shè)二次函數(shù)的圖象與y軸交于C點,與x軸的另一個交點為D.連接AC,CD,求∠ACD的正弦值;
(3)若M點在x軸下方二次函數(shù)圖象上,
①過M點作y軸平行線交直線AB于點E,以M點為圓心,ME的長為半徑畫圓,求圓M在直線AB上截得的弦長的最大值;
②若∠ABM=∠ACO,則點M的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著《流浪地球》的熱播,其同名科幻小說的銷量也急劇上升.為應(yīng)對這種變化,某網(wǎng)店分別花20000元和30000元先后兩次增購該小說,第二次的數(shù)量比第一次多500套,且兩次進(jìn)價相同.
(1)該科幻小說第一次購進(jìn)多少套?
(2)根據(jù)以往經(jīng)驗:當(dāng)銷售單價是25元時,每天的銷售量是250套;銷售單價每上漲1元,每天的銷售量就減少10套.網(wǎng)店要求每套書的利潤不低于10元且不高于18元.
①直接寫出網(wǎng)店銷售該科幻小說每天的銷售量y(套)與銷售單價x(元)之間的函數(shù)關(guān)系式及自變量x的取值范圍;
②網(wǎng)店決定每銷售1套該科幻小說,就捐贈a(0<a<7)元給困難職工,每天扣除捐贈后可獲得的最大利潤為1960元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(m,0),m<0,點B與點A 關(guān)于原點對稱,直線與雙曲線交于C,D兩點.
(1)直接判斷后填空:四邊形ACBD的形狀一定是 ;
(2)若點D(1,t),求雙曲線的解析式;
(3)在(2)的前提下,四邊形ACBD為矩形時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架無人機(jī)在距離地面高度為21.4米的點B處,測得地面點A的俯角為47°,接著,這架無人機(jī)從點B沿仰角為37°的方向繼續(xù)飛行20米到達(dá)點C,此時測得點C恰好在地面點D的正上方,且A,D兩點在同一水平線上,求A,D兩點之間的距離.(結(jié)果精確到1米;參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin47°≈0.73,cos47°≈0.68,tan47°≈1.07,≈2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲乙兩個玩具小汽車在筆直的240米跑道上進(jìn)行折返跑游戲,甲從點出發(fā),勻速在、之間折返跑,同時乙從點出發(fā),以大于甲的速度勻速在、之間折返跑.在折返點的時間忽略不計.
(1)若甲的速度為,乙的速度為,第一次迎面相遇的時間為,則與的關(guān)系式___________;
(注釋:當(dāng)兩車相向而行時相遇是迎面相遇,當(dāng)兩車在點相遇時也視為迎面相遇)
(2)如圖1,
①若甲乙兩車在距點20米處第一次迎面相遇,則他們在距點_______米第二次迎面相遇:
②若甲乙兩車在距點50米處第一次迎面相遇,則他們在距點__________米第二次迎面相遇;
(3)設(shè)甲乙兩車在距點米處第一次迎面相遇,在距點米處第二次迎面相遇.某同學(xué)發(fā)現(xiàn)了與的函數(shù)關(guān)系,并畫出了部分函數(shù)圖象(線段,不包括點,如圖2所示).
①則_______,并在圖2中補(bǔ)全與的函數(shù)圖象(在圖中注明關(guān)鍵點的數(shù)據(jù));
②分別求出各部分圖象對應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】文化是一個國家、一個民族的靈魂,近年來,央視推出《中國詩詞大會》、《中國成語大會》、《朗讀者》、《經(jīng)曲詠流傳》等一系列文化欄目.為了解學(xué)生對這些欄目的喜愛情況,某學(xué)校組織學(xué)生會成員隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,被調(diào)查的學(xué)生必須從《經(jīng)曲詠流傳》(記為A)、《中國詩詞大會》(記為B)、《中國成語大會》(記為C)、《朗讀者》(記為D)中選擇自己最喜愛的一個欄目,也可以不選以上四類而寫出一個自己最喜愛的其他文化欄目(這時記為E).根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中信息解答下列問題:
(1)在這項調(diào)查中,共調(diào)查了 名學(xué)生;
(2)最喜愛《朗讀者》的學(xué)生有 名;
(3)扇形統(tǒng)計圖中“B”所在扇形圓心角的度數(shù)為 ;
(4)選擇“E”的學(xué)生中有2名女生,其余為男生,現(xiàn)從選擇“E”的學(xué)生中隨機(jī)選出兩名學(xué)生參加座談,請直接寫出:剛好選到一名男生和一名女生的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)《圓》這一單元時,我們學(xué)習(xí)了圓周角定理的推論:圓內(nèi)接四邊形的對角互補(bǔ);事實上,它的逆命題:對角互補(bǔ)的四邊形的四個頂點共圓,也是一個真命題.在圖形旋轉(zhuǎn)的綜合題中經(jīng)常會出現(xiàn)對角互補(bǔ)的四邊形,那么,我們就可以借助“對角互補(bǔ)的四邊形的四個頂點共圓”,然后借助圓的相關(guān)知識來解決問題,例如:
已知:是等邊三角形,點是內(nèi)一點,連接,將線段繞逆時針旋轉(zhuǎn)得到線段,連接,,,并延長交于點.當(dāng)點在如圖所示的位置時:
(1)觀察填空:
①與全等的三角形是________;
②的度數(shù)為
(2)利用題干中的結(jié)論,證明:,,,四點共圓;
(3)直接寫出線段,,之間的數(shù)量關(guān)系.____________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com