【題目】拋物線a ≠ 0)滿足條件:(1;(2

3)與x軸有兩個(gè)交點(diǎn),且兩交點(diǎn)間的距離小于2.以下有四個(gè)結(jié)論:

;;,其中所有正確結(jié)論的序號(hào)是

【答案】②④

【解析】

∵4a-b=0,拋物線的對(duì)稱軸為x=-=-2

∵a-b+c0,當(dāng)x=-1時(shí),y0

拋物線與x軸有兩個(gè)不同的交點(diǎn)且這兩個(gè)交點(diǎn)之間的距離小于2,

拋物線與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)位于-3-1之間,b2-4ac0

∴16a2-4ac=4a4a-c)>0,據(jù)條件得圖象:

∴a0b0,c0∴4a-c0,∴4aca

當(dāng)x=-3時(shí),9a-3b+c0,由b=4a,∴c3aa,a

當(dāng)x=1時(shí),y=a+b+c0.故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李是某服裝廠的一名工人,負(fù)責(zé)加工A,B兩種型號(hào)服裝,他每月的工作時(shí)間為22天,月收入由底薪和計(jì)件工資兩部分組成,其中底薪900元,加工A型服裝1件可得20元,加工B型服裝1件可得12元.已知小李每天可加工A型服裝4件或B型服裝8件,設(shè)他每月加工A型服裝的時(shí)間為x天,月收入為y元.

(1) 求y與x的函數(shù)關(guān)系式;

(2) 根據(jù)服裝廠要求,小李每月加工A型服裝數(shù)量應(yīng)不少于B型服裝數(shù)量的,那么他的月收入最高能達(dá)到多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(知識(shí)鏈接)連結(jié)三角形兩邊中點(diǎn)的線段,叫做三角形的中位線.

(動(dòng)手操作)小明同學(xué)在探究證明中位線性質(zhì)定理時(shí),是沿著中位線將三角形剪開(kāi)然后將它們無(wú)縫隙、無(wú)重疊的拼在一起構(gòu)成平行四邊形,從而得出:三角形中位線平行于第三邊且等于第三邊的一半.

(性質(zhì)證明)小明為證明定理,他想利用三角形全等、平行四邊形的性質(zhì)來(lái)證明.請(qǐng)你幫他完成解題過(guò)程(要求:畫(huà)出圖形,根據(jù)圖形寫(xiě)出已知、求證和證明過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,AE平分∠DABCDE點(diǎn)、CF平分∠DCBAB于點(diǎn)F

1)求證:四邊形AECF是平行四邊形;

2)若BG平分∠ABCCDG點(diǎn),且AD2EG2,求四邊形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一組數(shù)據(jù)a1a2,a3的平均數(shù)為4,方差為3,那么數(shù)據(jù)a1+2,a2+2,a3+2的平均數(shù)和方差分別是( 。

A. 4,3B. 63C. 3,4D. 6,5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x,y

1)求x2+xy+y2

2)若x的小數(shù)部分為ay的整數(shù)部分為b,求ax+by的平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線y=ax+bx+4x軸交于點(diǎn)A(-3,0)和B(2,0),與y軸交于點(diǎn)C.

(1)求拋物線的解析式;

(2)如圖1,若點(diǎn)DCB的中點(diǎn),將線段DB繞點(diǎn)D旋轉(zhuǎn),點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對(duì)稱軸上時(shí),求點(diǎn)G的坐標(biāo);

(3)如圖2,若點(diǎn)D為直線BC或直線AC上的一點(diǎn),Ex軸上一動(dòng)點(diǎn),拋物線y=ax+bx+4對(duì)稱軸上是否存在點(diǎn)F,使以B,D,F(xiàn),E為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平形行四邊形ABCD中,連接對(duì)角線BD,AB=BD,E為線段AD上一點(diǎn),AE=BE

(1)如圖1,若∠ABE=30,CD=,求DE的長(zhǎng);

(2)如圖2,F(xiàn)為線段BE上一點(diǎn),DE=BF,連接AF、DF,DF的延長(zhǎng)線交AB于點(diǎn)G,若AF=2DE,求證:DF=2GF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,ACBD交于點(diǎn)O,BDAD于點(diǎn)D,將ABD沿BD翻折得到EBD,連接EC、EB

1)求證:四邊形DBCE是矩形;

2)若BD=4AD=3,求點(diǎn)OAB的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案