【題目】如圖,已知△ABC.
(1)實踐與操作:
利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法)
①作BC邊上的高AD;
②作△ABC的角平分線BE;
(2)綜合與運(yùn)用;
若△ABC中,AB=AC且∠CAB=36°,
請根據(jù)作圖和已知寫出符合括號內(nèi)要求的正確結(jié)論;
結(jié)論1: ;(關(guān)于角)
結(jié)論2: ;(關(guān)于線段)
結(jié)論3: .(關(guān)于三角形)
【答案】(1)①②如圖,見解析;(2)∠ABE=∠CBE=∠CAB=36°,∠BAD=∠CAD(關(guān)于角);BD=DC,AE=BE,BC=BE(關(guān)于線段);△ABE,△BCE都是等腰三角形(關(guān)于三角形).
【解析】
(1)①按照過直線外一點作直線的垂線步驟作即可;②按照作一個角的平分線的作法來做即可.
(2)根據(jù)等腰三角形的判定與性質(zhì)結(jié)合(1)中的圖形即可求解.
(1)①②如圖:
(2)∵AB=AC且∠CAB=36°,
∴∠ABC=∠C=72°,
∵BE是△ABC的角平分線,
∴∠ABE=∠CBE=36°,
∴∠ABE=∠CBE=∠CAB=36°.
∵AD是BC邊上的高,AB=AC,
∴BD=DC,∠BAD=∠CAD.
∵∠EAB=∠ABE=36°,∠C=∠CEB=72°,
∴AE=BE,BC=BE,
∴△ABE,△BCE都是等腰三角形.
則結(jié)論1:∠ABE=∠CBE=∠CAB=36°,∠BAD=∠CAD(關(guān)于角);
結(jié)論2:BD=DC,AE=BE,BC=BE(關(guān)于線段);
結(jié)論3:△ABE,△BCE都是等腰三角形(關(guān)于三角形).
故答案為∠ABE=∠CBE=∠CAB=36°,∠BAD=∠CAD(關(guān)于角);BD=DC,AE=BE,BC=BE(關(guān)于線段);△ABE,△BCE都是等腰三角形(關(guān)于三角形).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小宇設(shè)計了一個隨機(jī)碰撞模擬器:在模擬器中有,,三種型號的小球,它們隨機(jī)運(yùn)動,當(dāng)兩個小球相遇時會發(fā)生碰撞(不考慮多個小球相撞的情況).若相同型號的兩個小球發(fā)生碰撞,會變成一個型小球;若不同型號的兩個小球發(fā)生碰撞,則會變成另外一種型號的小球,例如,一個型小球和一個型小球發(fā)生碰撞,會變成一個型小球.現(xiàn)在模擬器中有型小球12個,型小球9個,型小球10個,如果經(jīng)過各種兩兩碰撞后,最后只剩一個小球.以下說法:
①最后剩下的小球可能是型小球;
②最后剩下的小球一定是型小球;
③最后剩下的小球一定不是型小球.
其中正確的說法是:( )
A.①B.②③C.③D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線AM上有一點B,AB=6.點C是射線AM上異于B的一點,過C作CD⊥AM,且CD=AC.過D點作DE⊥AD,交射線AM于E. 在射線CD取點F,使得CF=CB,連接AF并延長,交DE于點G.設(shè)AC=3x.
(1) 當(dāng)C在B點右側(cè)時,求AD、DF的長.(用關(guān)于x的代數(shù)式表示)
(2)當(dāng)x為何值時,△AFD是等腰三角形.
(3)若將△DFG沿FG翻折,恰使點D對應(yīng)點落在射線AM上,連接,.此時x的值為 (直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=2AC,點A(2,0)、B(0,4),點C在第一象限內(nèi),雙曲線y=(x>0)經(jīng)過點C.將△ABC沿y軸向上平移m個單位長度,使點A恰好落在雙曲線上,則m的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC,∠C=90°,D為BC的中點,以AC為直徑的⊙O交AB于點E.
(1)求證:DE是⊙O的切線;
(2)若AE:EB=1:2,BC=12,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的布袋中裝有標(biāo)著數(shù)字2,3,4,5的4個小球,這4個小球的材質(zhì)、大小和形狀完全相同,現(xiàn)從中隨機(jī)摸出兩個小球,這兩個小球上的數(shù)字之積大于9的概率為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)如圖1,在和中,,,,連接交于點.填空:①的值為______;②的度數(shù)為______.
(2)類比探究如圖2,在和中,,,連接交的延長線于點.請判斷的值及的度數(shù),并說明理由;
(3)拓展延伸在(2)的條件下,將繞點在平面內(nèi)旋轉(zhuǎn),所在直線交于點,若,,請直接寫出當(dāng)點與點在同一條直線上時的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O.E為邊AB上一點,且BE = 2AE.設(shè),.
(1)填空:向量 ;
(2)如果點F是線段OC的中點,那么向量 ,并在圖中畫出向量在向量和方向上的分向量.
注:本題結(jié)果用向量的式子表示.畫圖不要求寫作法,但要指出所作圖中表示結(jié)論的向量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,李林和王聰兩人在玩轉(zhuǎn)盤游戲時,分別把轉(zhuǎn)盤,分成3等份和4等份,并標(biāo)上數(shù)字(如圖所示).游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)兩轉(zhuǎn)盤停止后,若指針?biāo)竷蓚數(shù)字之和小于4,則李林獲勝;若數(shù)字之和大于4,則王聰獲勝,如果指針落在分割線上,則需要重新轉(zhuǎn)動轉(zhuǎn)盤.
(1)用列表法或畫樹狀圖法中的一種方法,求所有可能出現(xiàn)的結(jié)果.
(2)該游戲規(guī)則對雙方公平嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com