精英家教網 > 初中數學 > 題目詳情
(2009•茂名)已知:如圖,直徑為OA的⊙M與x軸交于點O、A,點B、C把分為三等份,連接MC并延長交y軸于點D(0,3)
(1)求證:△OMD≌△BAO;
(2)若直線l:y=kx+b把⊙M的面積分為二等份,求證:k+b=0.

【答案】分析:題目涉及的范圍包括三角形,圓形和直線等知識,范圍比較廣,要細心分析,認真領會題目意思.
解答:證明:(1)連接BM,∵B、C把三等分,∴∠1=∠5=60°,1分
又∵OM=BM,∴∠2=∠5=30°,2分
又∵OA為⊙M直徑,∴∠ABO=90°,∴AB=OA=OM,∠3=60°,3分
∴∠1=∠3,∠DOM=∠ABO=90°,4分
在△OMD和△BAO中,5分
∴△OMD≌△BAO(ASA).6分

(2)若直線l把⊙M的面積分為二等份,
則直線l必過圓心M,7分
∵D(0,3),∠1=60°,
,
,8分
把M(,0)代入y=kx+b得:k+b=0.
點評:這種題目是在中考大題經常出現的綜合性題,平時要多做類似的題目,練習多了也不算難.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年全國中考數學試題匯編《二次函數》(07)(解析版) 題型:解答題

(2009•茂名)已知:如圖,直線l:y=x+b,經過點M(0,),一組拋物線的頂點B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n為正整數)依次是直線l上的點,這組拋物線與x軸正半軸的交點依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0),設x1=d(0<d<1).
(1)求b的值;
(2)求經過點A1、B1、A2的拋物線的解析式(用含d的代數式表示);
(3)定義:若拋物線的頂點與x軸的兩個交點構成的三角形是直角三角形,則這種拋物線就稱為:“美麗拋物線”.探究:當d(0<d<1)的大小變化時,這組拋物線中是否存在美麗拋物線?若存在,請你求出相應的d的值.

查看答案和解析>>

科目:初中數學 來源:2010年浙江省杭州市蕭山區(qū)中考數學模擬試卷27(沈瑜瑛)(解析版) 題型:解答題

(2009•茂名)已知:如圖,直線l:y=x+b,經過點M(0,),一組拋物線的頂點B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n為正整數)依次是直線l上的點,這組拋物線與x軸正半軸的交點依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0),設x1=d(0<d<1).
(1)求b的值;
(2)求經過點A1、B1、A2的拋物線的解析式(用含d的代數式表示);
(3)定義:若拋物線的頂點與x軸的兩個交點構成的三角形是直角三角形,則這種拋物線就稱為:“美麗拋物線”.探究:當d(0<d<1)的大小變化時,這組拋物線中是否存在美麗拋物線?若存在,請你求出相應的d的值.

查看答案和解析>>

科目:初中數學 來源:2010年浙江省杭州市采荷中學中考數學模擬試卷(5月份)(解析版) 題型:解答題

(2009•茂名)已知:如圖,直線l:y=x+b,經過點M(0,),一組拋物線的頂點B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n為正整數)依次是直線l上的點,這組拋物線與x軸正半軸的交點依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0),設x1=d(0<d<1).
(1)求b的值;
(2)求經過點A1、B1、A2的拋物線的解析式(用含d的代數式表示);
(3)定義:若拋物線的頂點與x軸的兩個交點構成的三角形是直角三角形,則這種拋物線就稱為:“美麗拋物線”.探究:當d(0<d<1)的大小變化時,這組拋物線中是否存在美麗拋物線?若存在,請你求出相應的d的值.

查看答案和解析>>

科目:初中數學 來源:2010年貴州省貴陽市中考適應性考試數學試卷(解析版) 題型:解答題

(2009•茂名)已知:如圖,直線l:y=x+b,經過點M(0,),一組拋物線的頂點B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n為正整數)依次是直線l上的點,這組拋物線與x軸正半軸的交點依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0),設x1=d(0<d<1).
(1)求b的值;
(2)求經過點A1、B1、A2的拋物線的解析式(用含d的代數式表示);
(3)定義:若拋物線的頂點與x軸的兩個交點構成的三角形是直角三角形,則這種拋物線就稱為:“美麗拋物線”.探究:當d(0<d<1)的大小變化時,這組拋物線中是否存在美麗拋物線?若存在,請你求出相應的d的值.

查看答案和解析>>

科目:初中數學 來源:2009年廣東省茂名市中考數學試卷(解析版) 題型:解答題

(2009•茂名)已知:如圖,直線l:y=x+b,經過點M(0,),一組拋物線的頂點B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n為正整數)依次是直線l上的點,這組拋物線與x軸正半軸的交點依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0),設x1=d(0<d<1).
(1)求b的值;
(2)求經過點A1、B1、A2的拋物線的解析式(用含d的代數式表示);
(3)定義:若拋物線的頂點與x軸的兩個交點構成的三角形是直角三角形,則這種拋物線就稱為:“美麗拋物線”.探究:當d(0<d<1)的大小變化時,這組拋物線中是否存在美麗拋物線?若存在,請你求出相應的d的值.

查看答案和解析>>

同步練習冊答案