【題目】已知一次函數(shù)和反比例函數(shù).
(1)如圖1,若,且函數(shù)、的圖象都經(jīng)過點(diǎn).
①求,的值;
②直接寫出當(dāng)時(shí)的范圍;
(2)如圖2,過點(diǎn)作軸的平行線與函數(shù)的圖象相交于點(diǎn),與反比例函數(shù)的圖象相交于點(diǎn).
①若,直線與函數(shù)的圖象相交點(diǎn).當(dāng)點(diǎn)、、中的一點(diǎn)到另外兩點(diǎn)的距離相等時(shí),求的值;
②過點(diǎn)作軸的平行線與函數(shù)的圖象相交于點(diǎn).當(dāng)的值取不大于1的任意實(shí)數(shù)時(shí),點(diǎn)、間的距離與點(diǎn)、間的距離之和始終是一個(gè)定值.求此時(shí)的值及定值.
【答案】(1)①,;②;(2)①或4;②,.
【解析】
(1)①將點(diǎn)的坐標(biāo)代入一次函數(shù)表達(dá)式即可求解,將點(diǎn)的坐標(biāo)代入反比例函數(shù)表達(dá)式,即可求解;②由圖象可以直接看出;
(2)①,,,由或或得:或0或2,即可求解;②點(diǎn)的坐標(biāo)為,,即可求解.
(1)①將點(diǎn)的坐標(biāo)代入一次函數(shù)表達(dá)式并解得:,
將點(diǎn)的坐標(biāo)代入反比例函數(shù)得:;
②由圖象可以看出時(shí),;
(2)①當(dāng)時(shí),點(diǎn)、、的坐標(biāo)分別為、、,
則,,,
則或或,
即:或或,
即:或0或2或4,
當(dāng)時(shí),與題意不符,
點(diǎn)不能在的下方,即也不存在,,故不成立,
故或4;
②點(diǎn)的橫坐標(biāo)為:,
當(dāng)點(diǎn)在點(diǎn)左側(cè)時(shí),
,
的值取不大于1的任意數(shù)時(shí),始終是一個(gè)定值,
當(dāng)時(shí),此時(shí),從而.
當(dāng)點(diǎn)在點(diǎn)右側(cè)時(shí),
同理,
當(dāng),時(shí),(不合題意舍去)
故,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線的頂點(diǎn)坐標(biāo)是,并且拋物線與軸兩交點(diǎn)間的距離為8,試求該拋物線的關(guān)系式,并求出這條拋物線上縱坐標(biāo)為10的點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E為AB中點(diǎn).
(1)求證:四邊形BCDE是菱形.
(2)若AD=6,BD=8,求四邊形BCDE的周長和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了預(yù)測九年級(jí)男生“排球30秒”對(duì)墻墊球的情況,從本校九年級(jí)隨機(jī)抽取了n名男生進(jìn)行該項(xiàng)目測試,并繪制出如下的頻數(shù)分布直方圖,其中從左到右依次分為七個(gè)組(每組含最小值,不含最大值).根據(jù)統(tǒng)計(jì)圖提供的信息解答下列問題:
(1)求n的值.
(2)這個(gè)樣本數(shù)據(jù)的中位數(shù)落在第幾組?
(3)若測試九年級(jí)男生“排球30秒”對(duì)墻墊球個(gè)數(shù)不低于10個(gè)為合格,根據(jù)統(tǒng)計(jì)結(jié)果,估計(jì)該校九年級(jí)450名男同學(xué)成績合格的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)進(jìn)行乒乓球單打比賽,要從中選出兩位同學(xué)打第一場比賽.
(1) 若確定甲打第一場,再從其余三位同學(xué)中隨機(jī)選取一位,恰好選中乙同學(xué)的概率是 .
(2) 若隨機(jī)抽取兩位同學(xué),請(qǐng)用畫樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)P(m,n)是拋物線上的一個(gè)動(dòng)點(diǎn).
(1)如圖1,過動(dòng)點(diǎn)P作PB⊥x軸,垂足為B,連接PA,請(qǐng)通過測量或計(jì)算,比較PA與PB的大小關(guān)系:PA_____PB(直接填寫“>”“<”或“=”,不需解題過程);
(2)請(qǐng)利用(1)的結(jié)論解決下列問題:
①如圖2,設(shè)C的坐標(biāo)為(2,5),連接PC,AP+PC是否存在最小值?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,簡單說明理由;
②如圖3,過動(dòng)點(diǎn)P和原點(diǎn)O作直線交拋物線于另一點(diǎn)D,若AP=2AD,求直線OP的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校“綜合實(shí)踐”社團(tuán),計(jì)劃利用長的柵欄材料,一邊靠原有舊墻圍成如圖所示的兩個(gè)矩形試驗(yàn)田,墻的長度為.
(1)能否圍成總面積為的試驗(yàn)田?若能,求出的長度;若不能,說明理由;
(2)能否圍成總面積為的試驗(yàn)田?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=﹣1,且拋物線經(jīng)過 A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求此時(shí)點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線對(duì)稱軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com