【答案】
分析:(1)由待定系數(shù)法可求得拋物線的解析式.
(2)連接BC,交直線l于點D,根據(jù)拋物線對稱軸的性質(zhì),點B與點A關(guān)于直線l對稱,∴AD=BD.
∴AD+CD=BD+CD,由“兩點之間,線段最短”的原理可知:D在直線BC上AD+CD最短,所以D是直線l與直線BC的交點,
設出直線BC的解析式為y=kx+b,可用待定系數(shù)法求得BC直線的解析式,故可求得BC與直線l的交點D的坐標.
(3)由(2)可知,當AD+CD最短時,D在直線BC上,由于已知A,B,C,D四點坐標,根據(jù)線段之間的長度,可以求出△ABD是直角三角形,即BC與圓相切.由于AB⊥l,故由垂徑定理知及切線長定理知,另一點D與現(xiàn)在的點D關(guān)于x軸對稱,所以另一點D的坐標為(1,-2).
解答:解:
(1)設拋物線的解析式為y=a(x+1)(x-3).(1分)
將(0,3)代入上式,得3=a(0+1)(0-3).
解,得a=-1.(2分)∴拋物線的解析式為y=-(x+1)(x-3).
即y=-x
2+2x+3.(3分)
(2)連接BC,交直線l于點D.
∵點B與點A關(guān)于直線l對稱,
∴AD=BD.(4分)
∴AD+CD=BD+CD=BC.
由“兩點之間,線段最短”的原理可知:
此時AD+CD最小,點D的位置即為所求.(5分)
設直線BC的解析式為y=kx+b,
由直線BC過點(3,0),(0,3),
得
解這個方程組,得
∴直線BC的解析式為y=-x+3.(6分)
由(1)知:對稱軸l為
,即x=1.
將x=1代入y=-x+3,得y=-1+3=2.
∴點D的坐標為(1,2).(7分)
說明:用相似三角形或三角函數(shù)求點D的坐標也可,答案正確給(2分).
(3)①連接AD.設直線l與x軸的交點記為點E.
由(2)知:當AD+CD最小時,點D的坐標為(1,2).
∴DE=AE=BE=2.
∴∠DAB=∠DBA=45度.(8分)
∴∠ADB=90度.
∴AD⊥BD.
∴BD與⊙A相切.(9分)
②∵另一點D與D(1,2)關(guān)于x軸對稱,
∴D(1,-2).(11分)
點評:本題考查拋物線與數(shù)軸交點問題,以及頂點坐標公式,頂點與對稱軸之間的關(guān)系,圓與直線相切時的性質(zhì),兩點之間線段最短,垂徑定理和切線長定理等定理.